Show simple item record

Authordc.contributor.authorPeralta, Patricio 
Authordc.contributor.authorRuiz, Rafael O. 
Authordc.contributor.authorTaflanidis, Alexandros A. 
Admission datedc.date.accessioned2020-05-28T22:30:04Z
Available datedc.date.available2020-05-28T22:30:04Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationMechanical Systems and Signal Processing 141 (2020) 106506es_ES
Identifierdc.identifier.other10.1016/j.ymssp.2019.106506
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175074
Abstractdc.description.abstractThe model updating of the electro-mechanical properties of Piezoelectric Energy Harvesters (PEHs) using experimental data within a Bayesian inference setting is discussed. The implementation requires: a predictive model for the harvester response; an assumption for its prediction error; a prior multivariate probabilistic density function for the electromechanical properties; and experimental measurements of the harvester response. Different approaches are compared with respect to the Bayesian model updating, including point estimates of the updated properties based on Maximum a Posteriori and Maximum Likelihood Estimates, as well as a full description of the posterior density for the model characteristics, obtained through a Transitional Markov Chain Monte Carlo approach. A model class selection implementation is also discussed that allows for the consideration of some PEH properties as either deterministic or aleatoric (uncertain) variables. The overall framework offers an elegant approach to calibrate PEH numerical/analytical model or identify variability trends for the PEH manufacturing process.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11180812 Vice Presidency of Research and Development (VID) at Universidad de Chilees_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceMechanical Systems and Signal Processinges_ES
Keywordsdc.subjectBayesian model updatinges_ES
Keywordsdc.subjectPiezoelectric Energy Harvesterses_ES
Keywordsdc.subjectModel class selectiones_ES
Keywordsdc.subjectModel prediction errores_ES
Keywordsdc.subjectElectro-mechanical properties identificationes_ES
Títulodc.titleBayesian identification of electromechanical properties in piezoelectric energy harvesterses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile