Show simple item record

Authordc.contributor.authorRozas, Heraldo 
Authordc.contributor.authorJaramillo, Francisco 
Authordc.contributor.authorPérez, Aramis 
Authordc.contributor.authorJiménez, Diego 
Authordc.contributor.authorOrchard Concha, Marcos 
Authordc.contributor.authorMedjaher, Kamal 
Admission datedc.date.accessioned2020-06-02T19:39:22Z
Available datedc.date.available2020-06-02T19:39:22Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationMechanical Systems and Signal Processing 135 (2020) 106421es_ES
Identifierdc.identifier.other10.1016/j.ymssp.2019.106421
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175149
Abstractdc.description.abstractFailure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term prediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy.es_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica (CONICYT), CONICYT FONDECYT: 1170044. CONICYT REDES: 170031. Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project, CONICYT: FB0008. CONICYT-PFCHA/MagisterNacional: 2018-22180232. CONICYT-PCHA/Doctorado Nacional: 2014-21140201, 2015-21150121. University of Costa Rica.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceMechanical Systems and Signal Processinges_ES
Keywordsdc.subjectPrognostic algorithmses_ES
Keywordsdc.subjectTime-of-Failure probability distributiones_ES
Keywordsdc.subjectOnline performance assessmentes_ES
Títulodc.titleA method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithmses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile