Show simple item record

Authordc.contributor.authorSilva Valenzuela, R. 
Authordc.contributor.authorOrtiz Bernardin, Alejandro 
Authordc.contributor.authorSukumar, N. 
Authordc.contributor.authorArtioli, E. 
Authordc.contributor.authorHitschfeld Kahler, Nancy 
Admission datedc.date.accessioned2020-06-02T19:41:16Z
Available datedc.date.available2020-06-02T19:41:16Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationInt J Numer Methods Eng. 2020; 121: 2174–2205es_ES
Identifierdc.identifier.other10.1002/nme.6304
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175150
Abstractdc.description.abstractIn this article, we present a novel nodal integration scheme for meshfree Galerkin methods, which draws on the mathematical framework of the virtual element method. We adopt linear maximum-entropy basis functions for the discretization of field variables, although the proposed scheme is applicable to any linear meshfree approximant. In our approach, the weak form integrals are nodally integrated using nodal representative cells that carry the nodal displacements and state variables such as strains and stresses. The nodal integration is performed using the virtual element decomposition, wherein the bilinear form is decomposed into a consistency part and a stability part that ensure consistency and stability of the method. The performance of the proposed nodal integration scheme is assessed through benchmark problems in linear and nonlinear analyses of solids for small displacements and small-strain kinematics. Numerical results are presented for linear elastostatics and linear elastodynamics and viscoelasticity. We demonstrate that the proposed nodally integrated meshfree method is accurate, converges optimally, and is more reliable and robust than a standard cell-based Gauss integrated meshfree method.es_ES
Patrocinadordc.description.sponsorshipUniversity of Rome Tor Vergata Mission Sustainability Programme: SPY-E81I18000540005. Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), CONICYT FONDECYT: 1181192, 1181506. Ministry of Education, Universities and Research (MIUR), Research Projects of National Relevance (PRIN): 2017L7X3CS 004.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInternational Journal for Numerical Methods in Engineeringes_ES
Keywordsdc.subjectMaximum-entropy approximantses_ES
Keywordsdc.subjectMeshfree Galerkin methodses_ES
Keywordsdc.subjectNodal integrationes_ES
Keywordsdc.subjectPatch testes_ES
Keywordsdc.subjectStabilityes_ES
Keywordsdc.subjectVirtual element methodes_ES
Títulodc.titleA nodal integration scheme for meshfree Galerkin methods using the virtual element decompositiones_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile