Show simple item record

Authordc.contributor.authorWei, Wei 
Authordc.contributor.authorHuerta, E. A. 
Authordc.contributor.authorWhitmore, Bradley 
Authordc.contributor.authorLee, Janice 
Authordc.contributor.authorHannon, Stephen 
Authordc.contributor.authorChandar, Rupali 
Authordc.contributor.authorDale, Daniel 
Authordc.contributor.authorLarson, Kirsten 
Authordc.contributor.authorThilker, David 
Authordc.contributor.authorUbeda, Leonardo 
Authordc.contributor.authorBoquien, Mederic 
Authordc.contributor.authorChevance, Melanie 
Authordc.contributor.authorKruijssen, J. M. Diederik 
Authordc.contributor.authorSchruba, Andreas 
Authordc.contributor.authorBlanc Mendiberri, Guillermo 
Authordc.contributor.authorCongiu, Enrico 
Admission datedc.date.accessioned2020-06-04T21:05:02Z
Available datedc.date.available2020-06-04T21:05:02Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationMNRAS 493, 3178–3193 (2020)es_ES
Identifierdc.identifier.other10.1093/mnras/staa325
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175246
Abstractdc.description.abstractWe present the results of a proof-of-concept experiment that demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in Hubble Space Telescope (HST) ultraviolet-optical imaging of nearby spiral galaxies (D less than or similar to 20 Mpc) in the Physics at High Angular Resolution in Nearby GalaxieS (PHANGS)-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on neural network architecture (ResNet18 and VGG19-BN), training data sets curated by either a single expert or three astronomers, and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70 per cent, 40 per cent, 40-50 per cent, and 50-70 per cent for class 1, 2, 3 star clusters, and class 4 non-clusters, respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80 per cent, 40-50 per cent, 40-50 per cent, and 60-70 per cent). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized data set of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.es_ES
Patrocinadordc.description.sponsorshipNational Aeronautics & Space Administration (NASA) NAS 5-26555 STScI under NASA 15654 NAS5-26555 National Science Foundation (NSF) OAC-1931561 OAC-1934757 National Science Foundation (NSF) OCI-0725070 ACI-1238993 NSF-1550514 NSF-1659702 TG-PHY160053 State of Illinois National Science Foundation (NSF) OAC-1725729 University of Illinois at Urbana-Champaign United States Department of Energy (DOE) DE-AC02-06CH11357 German Research Foundation (DFG) KR4801/1-1 German Research Foundation (DFG) KR4801/2-1 European Research Council (ERC) 714907es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherOxford University Presses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceMonthly Notices of the Royal Astronomical Societyes_ES
Keywordsdc.subjectGalaxies: star clusters: generales_ES
Títulodc.titleDeep transfer learning for star cluster classification: I. application to the PHANGS–HST surveyes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile