Show simple item record

Authordc.contributor.authorLin, Jon Z. 
Authordc.contributor.authorEspinoza Catalán, Víctor 
Authordc.contributor.authorMarks, Katherine L. 
Authordc.contributor.authorZañartu, Matías 
Authordc.contributor.authorMehta, Daryush D. 
Admission datedc.date.accessioned2020-06-08T22:51:27Z
Available datedc.date.available2020-06-08T22:51:27Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationIEEE Journal of Selected Topics in Signal Processing (Feb 2020) 14(2) : 449-460es_ES
Identifierdc.identifier.other10.1109/JSTSP.2019.2959267
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175314
Abstractdc.description.abstractSubglottal air pressure plays a major role in voice production and is a primary factor in controlling voice onset, offset, sound pressure level, glottal airflow, vocal fold collision pressures, and variations in fundamental frequency. Previous work has shown promise for the estimation of subglottal pressure from an unobtrusive miniature accelerometer sensor attached to the anterior base of the neck during typical modal voice production across multiple pitch and vowel contexts. This study expands on that work to incorporate additional accelerometer-based measures of vocal function to compensate for non-modal phonation characteristics and achieve an improved estimation of subglottal pressure. Subjects with normal voices repeated /p/-vowel syllable strings from loud-to-soft levels in multiple vowel contexts (/a/, /i/, and /u/), pitch conditions (comfortable, lower than comfortable, higher than comfortable), and voice quality types (modal, breathy, strained, and rough). Subject-specific, stepwise regression models were constructed using root-mean-square (RMS) values of the accelerometer signal alone (baseline condition) and in combination with cepstral peak prominence, fundamental frequency, and glottal airflow measures derived using subglottal impedance-based inverse filtering. Five-fold cross-validation assessed the robustness of model performance using the root-mean-square error metric for each regression model. Each cross-validation fold exhibited up to a 25% decrease in prediction error when the model incorporated multi-dimensional aspects of the accelerometer signal compared with RMS-only models. Improved estimation of subglottal pressure for non-modal phonation was thus achievable, lending to future studies of subglottal pressure estimation in patients with voice disorders and in ambulatory voice recordings.es_ES
Patrocinadordc.description.sponsorshipUnited States Department of Health & Human Services, National Institutes of Health (NIH), USA, NIH National Institute on Deafness & Other Communication Disorders (NIDCD): R21 DC015877, P50 DC015446. CONICYT BASAL: FB0008.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEE-Institute of Electrical and Electronics Engineerses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Journal of Selected Topics in Signal Processinges_ES
Keywordsdc.subjectSubglottal pressurees_ES
Keywordsdc.subjectClinical voice assessmentes_ES
Keywordsdc.subjectNeck-surface accelerometeres_ES
Keywordsdc.subjectAmbulatory voice monitoringes_ES
Títulodc.titleImproved subglottal pressure estimation from neck-surface vibration in healthy speakers producing non-modal phonationes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile