Lyapunov stability of differential inclusions with Lipschitz Cusco perturbations of maximal monotone operators
Author
dc.contributor.author
Adly, Samir
Author
dc.contributor.author
Hantoute, Abderrahim
Author
dc.contributor.author
Nguyen, Bao Tran
Admission date
dc.date.accessioned
2020-06-09T21:41:26Z
Available date
dc.date.available
2020-06-09T21:41:26Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Set-Valued and Variational Analysis (2020) 28:345–368
es_ES
Identifier
dc.identifier.other
10.1007/s11228-019-00513-4
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/175366
Abstract
dc.description.abstract
We give new criteria for weak and strong invariant closed sets for differential inclusions in Double-struck capital Rn, and which are simultaneously governed by Lipschitz Cusco mapping and by maximal monotone operators. Correspondingly, we provide different characterizations for the associated strong Lyapunov functions and pairs. The resulting conditions only depend on the data of the system, while the invariant sets are assumed to be closed, and the Lyapunov pairs are assumed to be only lower semi-continuous.
es_ES
Patrocinador
dc.description.sponsorship
Conicyt grants
PIA AFB-170001
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1151003
1190012
Conicyt-Redes
150040
Mathamsud
17-MATH-06
Conicyt-Pcha/Doctorado Nacional/2014-63140104