Partitioning infinite hypergraphs into few monochromatic berge-paths
Author
dc.contributor.author
Bustamante, Sebastián
Author
dc.contributor.author
Corsten, Jan
Author
dc.contributor.author
Frankl, Nóra
Admission date
dc.date.accessioned
2020-06-10T19:11:23Z
Available date
dc.date.available
2020-06-10T19:11:23Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Graphs and Combinatorics (2020) 36:437–444
es_ES
Identifier
dc.identifier.other
10.1007/s00373-019-02113-3
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/175374
Abstract
dc.description.abstract
Extending a result of Rado to hypergraphs, we prove that for all s,k,t is an element of N$$s, k, t \in {\mathbb {N}}$$\end{document} with k >= t >= 2 the vertices of every r=s(k-t+1)-edge-coloured countably infinite complete k-graph can be partitioned into the cores of at most s monochromatic t-tight Berge-paths of different colours. We further describe a construction showing that this result is best possible.