Show simple item record

Authordc.contributor.authorThandapani, Prabhakaran 
Authordc.contributor.authorViswanathan, Mangalaraja Ramalinga 
Authordc.contributor.authorVinícius Araújo, Marcus 
Authordc.contributor.authorBakuzis, Andris F. 
Authordc.contributor.authorBerón, Fanny 
Authordc.contributor.authorThirumurugan, Arun 
Authordc.contributor.authorDenardin, Juliano C. 
Authordc.contributor.authorJiménez, José A. 
Authordc.contributor.authorAkbari Fakhrabadi, Ali 
Admission datedc.date.accessioned2020-06-11T22:15:13Z
Available datedc.date.available2020-06-11T22:15:13Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationJ Am Ceram Soc. 2020;00:1–12.es_ES
Identifierdc.identifier.other10.1111/jace.17175
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175413
Abstractdc.description.abstractThe study demonstrates the performance of heating efficiency in single-phase and binary phase spinel ferrite nanosystems. Ferrimagnetic cobalt ferrite (CoFe2O4) (CFO) and superparamagnetic copper ferrite/copper oxide (CuFe2O4/CuO) (CuF) nanosystems of different particle sizes were synthesized through a microwave-assisted coprecipitation method. The heating behavior was observed in range of both field amplitudes (8-24 kA/m at 516 kHz) and frequencies (325-973 kHz at 12 kA/m). The heating efficiency was analyzed and compared by means of particle size, magnetization, effective anisotropy constant, and Neel relaxation mechanism. Indeed, the heating rate was maximized in larger ferrite particles with low effective anisotropy constant. Moreover, though the magnetization and effective anisotropy constant of single-phase CoFe2O4 nanoparticles were higher, the binary phase CuFe2O4/CuO nanosystems of similar crystallite size (28 nm) exhibited superior heating efficiency (4.21 degrees C/s). For a field amplitude and frequency of 24 kA/m and 516 kHz, the heating rate of CuF and CFO ferrites with different crystallite sizes decreased in the order of 4.21 > 2.14 > 0.58 > 0.52 degrees C/s for 29 nm > 25 nm > 12 nm > 15 nm, respectively. The results emphasize that binary phase ferrite nanoparticles are better thermoseeds than the single-phase ferrites for the magnetic hyperthermia application.es_ES
Patrocinadordc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (2018) 19096-1 2017/10581-1 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3160170 National Council for Scientific and Technological Development (CNPq) 310230/2017-9 Fundacao de Amparo a Pesquisa do Estado de Goias 201710267000511es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of the American Ceramic Societyes_ES
Keywordsdc.subjectAnisotropyes_ES
Keywordsdc.subjectHeat conductiones_ES
Keywordsdc.subjectMagnetic measurementses_ES
Keywordsdc.subjectMagnetically ordered materialses_ES
Keywordsdc.subjectNanostructured materialses_ES
Keywordsdc.subjectPrecipitationes_ES
Títulodc.titleSingle-phase and binary phase nanogranular ferrites for magnetic hyperthermia applicationes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile