Show simple item record

Authordc.contributor.authorBarrera Hinojosa, Cristian 
Authordc.contributor.authorSapone, Doménico 
Admission datedc.date.accessioned2020-06-11T22:19:11Z
Available datedc.date.available2020-06-11T22:19:11Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationJournal of Cosmology and Astroparticle Physics (Mar 2020) num.3 : art. 37es_ES
Identifierdc.identifier.other10.1088/1475-7516/2020/03/037
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175415
Abstractdc.description.abstractWe study the imprints of an effective dark energy fluid in the large scale structure of the universe through the observed angular power spectrum of galaxies in the relativistic regime. We adopt the phenomenological approach that introduces two parameters {Q, eta} at the level of linear perturbations and allow to take into account the modified clustering (or effective gravitational constant) and anisotropic stress appearing in models beyond Lambda CDM. We characterize the effective dark energy fluid by an equation of state parameter w = -0.95 and various sound speed cases in the range 10(-6) <= c(s)(2) <= 1, thus covering K-essence and quintessence cosmologies. We calculate the angular power spectra of standard and relativistic effects for these scenarios under the {Q, eta} parametrization, and we compare these relative to a fiducial Lambda CDM cosmology. We find that, overall, deviations relative to Lambda CDM are stronger at low redshift since the behavior of the dark energy fluid can mimic the cosmological constant during matter domination era but departs during dark energy domination. In particular, at z = 0.1 the matter density fluctuations are suppressed by up to similar to 3% for the quintessence-like case, while redshift-space distortions and Doppler effect can be enhanced by similar to 15% at large scales for the lowest sound speed scenario. On the other hand, at z = 2 we find deviations of up to similar to 5% in gravitational lensing, whereas the Integrated Sachs-Wolfe effect can deviate up to similar to 17%. Furthermore, when considering an imperfect dark energy fluid scenario, we find that all effects are insensitive to the presence of anisotropic stress at low redshift, and only the Integrated Sachs-Wolfe effect can detect this feature at z = 2 and very large scales.es_ES
Patrocinadordc.description.sponsorshipChilean National Commission for Scientific and Technological Research (CONICYT) through FONDECYT grant: 11140496. Comisión Nacional de Investigación Científica y Tecnológica (CONICYT): 72180214.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Cosmology and Astroparticle Physicses_ES
Keywordsdc.subjectCosmological perturbation theoryes_ES
Keywordsdc.subjectPower spectrumes_ES
Keywordsdc.subjectCosmic webes_ES
Keywordsdc.subjectDark energy theoryes_ES
Títulodc.titleRelativistic effects in the large-scale structure with effective dark energy fluidses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile