Show simple item record

Authordc.contributor.authorGarcía Huidobro, Marta 
Authordc.contributor.authorManasevich Tolosa, Raúl 
Authordc.contributor.authorTanaka, Satoshi 
Admission datedc.date.accessioned2020-06-17T22:52:33Z
Available datedc.date.available2020-06-17T22:52:33Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationAdvanced Nonlinear Studies 20 (2): 293-310es_ES
Identifierdc.identifier.other10.1515/ans-2020-2082
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175548
Abstractdc.description.abstractIn this paper we deal with positive radially symmetric solutions for a boundary value problem containing a strongly nonlinear operator. The proof of existence of positive solutions that we give uses the blow-up method as a main ingredient for the search of a-priori bounds of solutions. The blow-up argument is one by contradiction and uses a sort of scaling, reminiscent to the one used in the theory of minimal surfaces, see [12], and therefore the homogeneity of the operators, Laplacian or p-Laplacian, and second members powers or power like functions play a fundamental role in the method. Thus, when the differential operators are no longer homogeneous, and similarly for the second members, applying the blow-up method to obtain a-priori bounds of solutions seems an almost impossible task. In spite of this fact, in [8], we were able to overcome this difficulty and obtain a-priori bounds for a certain (simpler) type of problems. We show in this paper that the asymptotically homogeneous functions provide, in the same sense, a nonlinear rescaling, that allows us to generalize the blow-up method to our present situation. After the a-priori bounds are obtained, the existence of a solution follows from Leray-Schauder topological degree theory.es_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 1160540 Conicyt Basal Grant PIA PFB170001 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 26400182 19K03595 17H01095es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWalter de Gruyteres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAdvanced Nonlinear Studieses_ES
Keywordsdc.subjectQuasilinear Elliptic Systemses_ES
Keywordsdc.subjectAsymptotically Homogeneouses_ES
Keywordsdc.subjectA-Priori Boundses_ES
Keywordsdc.subjectBlow-Upes_ES
Keywordsdc.subjectLeray Schauder Degreees_ES
Títulodc.titlePositive solutions for systems of quasilinear equations with non-homogeneous operators and weightses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile