Positive solutions for systems of quasilinear equations with non-homogeneous operators and weights
| Author | dc.contributor.author | García Huidobro, Marta | |
| Author | dc.contributor.author | Manasevich Tolosa, Raúl | |
| Author | dc.contributor.author | Tanaka, Satoshi | |
| Admission date | dc.date.accessioned | 2020-06-17T22:52:33Z | |
| Available date | dc.date.available | 2020-06-17T22:52:33Z | |
| Publication date | dc.date.issued | 2020 | |
| Cita de ítem | dc.identifier.citation | Advanced Nonlinear Studies 20 (2): 293-310 | es_ES |
| Identifier | dc.identifier.other | 10.1515/ans-2020-2082 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/175548 | |
| Abstract | dc.description.abstract | In this paper we deal with positive radially symmetric solutions for a boundary value problem containing a strongly nonlinear operator. The proof of existence of positive solutions that we give uses the blow-up method as a main ingredient for the search of a-priori bounds of solutions. The blow-up argument is one by contradiction and uses a sort of scaling, reminiscent to the one used in the theory of minimal surfaces, see [12], and therefore the homogeneity of the operators, Laplacian or p-Laplacian, and second members powers or power like functions play a fundamental role in the method. Thus, when the differential operators are no longer homogeneous, and similarly for the second members, applying the blow-up method to obtain a-priori bounds of solutions seems an almost impossible task. In spite of this fact, in [8], we were able to overcome this difficulty and obtain a-priori bounds for a certain (simpler) type of problems. We show in this paper that the asymptotically homogeneous functions provide, in the same sense, a nonlinear rescaling, that allows us to generalize the blow-up method to our present situation. After the a-priori bounds are obtained, the existence of a solution follows from Leray-Schauder topological degree theory. | es_ES |
| Patrocinador | dc.description.sponsorship | Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 1160540 Conicyt Basal Grant PIA PFB170001 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 26400182 19K03595 17H01095 | es_ES |
| Lenguage | dc.language.iso | en | es_ES |
| Publisher | dc.publisher | Walter de Gruyter | es_ES |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | * |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
| Source | dc.source | Advanced Nonlinear Studies | es_ES |
| Keywords | dc.subject | Quasilinear Elliptic Systems | es_ES |
| Keywords | dc.subject | Asymptotically Homogeneous | es_ES |
| Keywords | dc.subject | A-Priori Bounds | es_ES |
| Keywords | dc.subject | Blow-Up | es_ES |
| Keywords | dc.subject | Leray Schauder Degree | es_ES |
| Título | dc.title | Positive solutions for systems of quasilinear equations with non-homogeneous operators and weights | es_ES |
| Document type | dc.type | Artículo de revista | es_ES |
| dcterms.accessRights | dcterms.accessRights | Acceso a solo metadatos | es_ES |
| Cataloguer | uchile.catalogador | ctc | es_ES |
| Indexation | uchile.index | Artículo de publicación ISI | |
| Indexation | uchile.index | Artículo de publicación SCOPUS |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas

