Show simple item record

Authordc.contributor.authorHaas, Jannik 
Authordc.contributor.authorMoreno Leiva, Simón 
Authordc.contributor.authorJunne, Tobías 
Authordc.contributor.authorChen, Po-Jung 
Authordc.contributor.authorPamparana, Giovanni 
Authordc.contributor.authorNowak, Wolfgang 
Authordc.contributor.authorKracht Gajardo, Willy 
Authordc.contributor.authorOrtiz, Julian 
Admission datedc.date.accessioned2020-07-03T02:47:35Z
Available datedc.date.available2020-07-03T02:47:35Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationApplied Energy 262 (2020) 114506es_ES
Identifierdc.identifier.other10.1016/j.apenergy.2020.114506
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175784
Abstractdc.description.abstractExtracting copper is energy-intensive. At the same time, copper is a key material for building the energy systems of the future. Both facts call for clean copper production. The present work addresses the greenhouse gas emissions of this industry and focuses on designing the future electricity supply of the main copper mines around the world, from 2020 to 2050, using distributed solar photovoltaic energy, storage, and a grid connection. We also consider the increasing energy demand due to ore grade decline. For the design, we use an optimization model called LEELO. Its main inputs are an hourly annual demand profile, power-contract prices for each mine, cost projections for energy technologies, and an hourly annual solar irradiation profile for each mine. Our findings show that it is attractive for the mines to have today a solar generation of 25% to 50% of the yearly electricity demand. By 2030, the least-cost solution for mines in sunny regions will be almost fully renewable, while in other regions it will take until 2040. The expected electricity costs range from 60 to100 (sic)MWh for 2020 and from 30 to 55 (sic)MWh for 2050, with the lower bound in sunny regions such as Chile and Peru. In most locations assessed, the low cost of solar energy will compensate for the increased demand due to declining ore grades. For the next steps, we recommend representing the demand with further detail, including other vectors such as heat and fuels. In addition, we recommend to include the embodied emissions of the technologies to get a more complete picture of the environmental footprint of the energy supply for copper production.es_ES
Patrocinadordc.description.sponsorshipDeutscher Akademischer Austausch Dienst (DAAD) Chilean National Commission of Technology and Science [CONICYT PFCHA/DOCTORADO BECAS CHILE BILATERAL] DAAD/2016 -62160012 CONICYT/FONDAP/15110019 CONICYT-BMBF 20140019 German Research Foundation (DFG) 805/111 Natural Sciences and Engineering Research Council of Canada RGPIN-2017-04200 RGPAS-2017-507956es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceApplied Energyes_ES
Keywordsdc.subjectGeneration expansion planninges_ES
Keywordsdc.subjectCleaner productiones_ES
Keywordsdc.subjectIntegration of solar photovoltaices_ES
Keywordsdc.subjectLow-carbon systemses_ES
Keywordsdc.subjectResponsible copperes_ES
Keywordsdc.subjectEnergy in mininges_ES
Títulodc.titleCopper mining: 100% solar electricity by 2030?es_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile