Show simple item record

Authordc.contributor.authorKosolobov, Dmitry 
Authordc.contributor.authorValenzuela, Daniel 
Authordc.contributor.authorNavarro, Gonzalo
Authordc.contributor.authorPuglisi, Simon J. 
Admission datedc.date.accessioned2020-07-23T22:54:08Z
Available datedc.date.available2020-07-23T22:54:08Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationAlgorithmica (2020)es_ES
Identifierdc.identifier.other10.1007/s00453-020-00722-6
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176105
Abstractdc.description.abstractLempel-Ziv (LZ77 or, briefly, LZ) is one of the most effective and widely-used compressors for repetitive texts. However, the existing efficient methods computing the exact LZ parsing have to use linear or close to linear space to index the input text during the construction of the parsing, which is prohibitive for long inputs. An alternative is Relative Lempel-Ziv (RLZ), which indexes only a fixed reference sequence, whose size can be controlled. Deriving the reference sequence by sampling the text yields reasonable compression ratios for RLZ, but performance is not always competitive with that of LZ and depends heavily on the similarity of the reference to the text. In this paper we introduce ReLZ, a technique that uses RLZ as a preprocessor to approximate the LZ parsing using little memory. RLZ is first used to produce a sequence of phrases, and these are regarded as metasymbols that are input to LZ for a second-level parsing on a (most often) drastically shorter sequence. This parsing is finally translated into one on the original sequence. We analyze the new scheme and prove that, like LZ, it achieves the kth order empirical entropy compression nHk+o(nlog sigma) with k=o(log sigma n) where n is the input length and sigma is the alphabet size. In fact, we prove this entropy bound not only for ReLZ but for a wide class of LZ-like encodings. Then, we establish a lower bound on ReLZ approximation ratio showing that the number of phrases in it can be omega(logn) times larger than the number of phrases in LZ. Our experiments show that ReLZ is faster than existing alternatives to compute the (exact or approximate) LZ parsing, at the reasonable price of an approximation factor below 2.0 in all tested scenarios, and sometimes below 1.05, to the size of LZ.es_ES
Patrocinadordc.description.sponsorshipEuropean Union (EU) 690941es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAlgorithmicaes_ES
Keywordsdc.subjectLempel-Ziv compressiones_ES
Keywordsdc.subjectRelative Lempel-Zives_ES
Keywordsdc.subjectEmpirical entropyes_ES
Títulodc.titleLempel–ziv‑like parsing in small spacees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile