Show simple item record

Authordc.contributor.authorShaw, Thomas E. 
Authordc.contributor.authorGascoin, Simon 
Authordc.contributor.authorMendoza Zúñiga, Pablo 
Authordc.contributor.authorPellicciotti, Francesca 
Authordc.contributor.authorMcPhee Torres, James 
Admission datedc.date.accessioned2020-07-27T23:54:14Z
Available datedc.date.available2020-07-27T23:54:14Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationWater Resources Research 56 (2020): e2019WR024880es_ES
Identifierdc.identifier.other10.1029/2019WR024880
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176156
Abstractdc.description.abstractObtaining detailed information about high mountain snowpacks is often limited by insufficient ground-based observations and uncertainty in the (re)distribution of solid precipitation. We utilize high-resolution optical images from Pleiades satellites to generate a snow depth map, at a spatial resolution of 4 m, for a high mountain catchment of central Chile. Results are negatively biased (median difference of -0.22 m) when compared against observations from a terrestrial Light Detection And Ranging scan, though replicate general snow depth variability well. Additionally, the Pleiades dataset is subject to data gaps (17% of total pixels), negative values for shallow snow (12%), and noise on slopes >40-50 degrees (2%). We correct and filter the Pleiades snow depths using surface classification techniques of snow-free areas and a random forest model for data gap filling. Snow depths (with an estimated error of similar to 0.36 m) average 1.66 m and relate well to topographical parameters such as elevation and northness in a similar way to previous studies. However, estimations of snow depth based upon topography (TOPO) or physically based modeling (DBSM) cannot resolve localized processes (i.e., avalanching or wind scouring) that are detected by Pleiades, even when forced with locally calibrated data. Comparing these alternative model approaches to corrected Pleiades snow depths reveals total snow volume differences between -28% (DBSM) and +54% (TOPO) for the catchment and large differences across most elevation bands. Pleiades represents an important contribution to understanding snow accumulation at sparsely monitored catchments, though ideally requires a careful systematic validation procedure to identify catchment-scale biases and errors in the snow depth derivation.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3180145 1171032 3170079 CNES Tosca Programme National de Teledetection Spatiale (PNTS) PNTS-2018-4 CNES agreement PNTS-20184es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceWater Resources Researches_ES
Keywordsdc.subjectSnow depthes_ES
Keywordsdc.subjectPleiadeses_ES
Keywordsdc.subjectChilees_ES
Keywordsdc.subjectMountaines_ES
Keywordsdc.subjectLiDARes_ES
Títulodc.titleSnow depth patterns in a high mountain andean catchment from satellite optical tristereoscopic remote sensinges_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile