Show simple item record

Authordc.contributor.authorDíaz Zamora, Juglar 
Authordc.contributor.authorPoblete Labra, Bárbara 
Authordc.contributor.authorBravo Márquez, Felipe 
Admission datedc.date.accessioned2020-07-30T23:16:33Z
Available datedc.date.available2020-07-30T23:16:33Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationInformation Processing & Management 57(5):102219 (2020)es_ES
Identifierdc.identifier.other10.1016/j.ipm.2020.102219
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176213
Abstractdc.description.abstractGPS-enabled devices and social media popularity have created an unprecedented opportunity for researchers to collect, explore, and analyze text data with fine-grained spatial and temporal metadata. In this sense, text, time and space are different domains with their own representation scales and methods. This poses a challenge on how to detect relevant patterns that may only arise from the combination of text with spatio-temporal elements. In particular, spatio-temporal textual data representation has relied on feature embedding techniques. This can limit a model's expressiveness for representing certain patterns extracted from the sequence structure of textual data. To deal with the aforementioned problems, we propose an Acceptor recurrent neural network model that jointly models spatio-temporal textual data. Our goal is to focus on representing the mutual influence and relationships that can exist between written language and the time-andplace where it was produced. We represent space, time, and text as tuples, and use pairs of elements to predict a third one. This results in three predictive tasks that are trained simultaneously. We conduct experiments on two social media datasets and on a crime dataset; we use Mean Reciprocal Rank as evaluation metric. Our experiments show that our model outperforms state-of-the-art methods ranging from a 5.5% to a 24.7% improvement for location and time prediction.es_ES
Patrocinadordc.description.sponsorshipMillennium Institute for Foundational Research on Data (IMFD) Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 1191604 CONICYT-PCHA/Doctorado Nacional 2016-21160142es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInformation Processing & Managementes_ES
Keywordsdc.subjectSocial mediaes_ES
Keywordsdc.subjectSpatio-temporal dataes_ES
Keywordsdc.subjectRecurrent neural networkses_ES
Títulodc.titleAn integrated model for textual social media data with spatio-temporal dimensionses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile