Show simple item record

Authordc.contributor.authorPérez Dattari, Rodrigo 
Authordc.contributor.authorCelemin, Carlos 
Authordc.contributor.authorFranzese, Giovanni 
Authordc.contributor.authorSolar San Martín, Javier del 
Authordc.contributor.authorKober, Jens 
Admission datedc.date.accessioned2020-08-05T23:07:22Z
Available datedc.date.available2020-08-05T23:07:22Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationIEEE Robotics & Automation Magazine. Vol. 27, No. 2 , (2020): 46-54es_ES
Identifierdc.identifier.other10.1109/MRA.2020.2983649
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176323
Abstractdc.description.abstractCurrent ongoing industry revolution demands more flexible products, including robots in household environments and medium-scale factories. Such robots should be able to adapt to new conditions and environments and be programmed with ease. As an example, let us suppose that there are robot manipulators working on an industrial production line and that they need to perform a new task. If these robots were hard coded, it could take days to adapt them to the new settings, which would stop production at the factory. Robots that non-expert humans could easily program would speed up the process considerably.es_ES
Patrocinadordc.description.sponsorshipNetherlands Organization for Scientific Research project Cognitive Robots for Flexible Agro-Food Technology P17-01 European Research Council (ERC) 804907 Chile's National Fund for Scientific and Technological Development project (FONDECYT) 1201170 Chile's Associative Research Program of the National Research and Development Agency (ANID/PIA) AFB180004es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE-Institute of Electrical and Electronics Engineerses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Robotics & Automation Magazinees_ES
Keywordsdc.subjectArtificial neural networkses_ES
Keywordsdc.subjectService robotses_ES
Keywordsdc.subjectTask analysises_ES
Keywordsdc.subjectFeature extractiones_ES
Keywordsdc.subjectTraininges_ES
Keywordsdc.subjectComputer architecturees_ES
Títulodc.titleInteractive learning of temporal features for control. Shaping Policies and state representations from human feedbackes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile