Show simple item record

Authordc.contributor.authorVilla Torrealba, Andrea 
Authordc.contributor.authorChávez Raby, Cristóbal 
Authordc.contributor.authorCastro, Pablo de 
Authordc.contributor.authorSoto, Rodrigo 
Admission datedc.date.accessioned2020-08-13T23:49:39Z
Available datedc.date.available2020-08-13T23:49:39Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationPhysical Review E Volumen: 101 Número: 6 Número de artículo: 062607 Jun 2020es_ES
Identifierdc.identifier.other10.1103/PhysRevE.101.062607
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/176429
Abstractdc.description.abstractThe run-and-tumble (RT) dynamics followed by bacterial swimmers gives rise first to a ballistic motion due to their persistence and later, through consecutive tumbles, to a diffusive process. Here we investigate how long it takes for a dilute swimmer suspension to reach the diffusive regime as well as what is the amplitude of the deviations from the diffusive dynamics. A linear time dependence of the mean-squared displacement (MSD) is insufficient to characterize diffusion and thus we also focus on the excess kurtosis of the displacement distribution. Four swimming strategies are considered: (i) the conventional RT model with complete reorientation after tumbling; (ii) the case of partial reorientation, characterized by a distribution of tumbling angles; (iii) a run-and-reverse model with rotational diffusion; and (iv) a RT particle where the tumbling rate depends on the stochastic concentration of an internal protein. By analyzing the associated kinetic equations for the probability density function and simulating the models, we find that for models (ii), (iii), and (iv) the relaxation to diffusion can take much longer than the mean time between tumble events, evidencing the existence of large tails in the particle displacements. Moreover, the excess kurtosis can assume large positive values. In model (ii) it is possible for some distributions of tumbling angles that the MSD reaches a linear time dependence but, still, the dynamics remains non-Gaussian for long times. This is also the case in model (iii) for small rotational diffusivity. For all models, the long-time diffusion coefficients are also obtained. The theoretical approach, which relies on eigenvalue and angular Fourier expansions of the van Hove function, is in excellent agreement with the simulations.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1180791 Millennium Nucleus Physics of Active Mater of ANID (Chile)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Physical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourcePhysical Review Ees_ES
Keywordsdc.subjectMicrobotses_ES
Keywordsdc.subjectMotilityes_ES
Keywordsdc.subjectRheologyes_ES
Keywordsdc.subjectMotores_ES
Títulodc.titleRun-and-tumble bacteria slowly approaching the diffusive regimees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile