Determination of convex functions via subgradients of minimal norm
Author
dc.contributor.author
Pérez Aros, Pedro Antonio
Author
dc.contributor.author
Salas Videla, David
Author
dc.contributor.author
Vilches, Emilio
Admission date
dc.date.accessioned
2020-10-21T19:33:03Z
Available date
dc.date.available
2020-10-21T19:33:03Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Mathematical Programming Aug 2020
es_ES
Identifier
dc.identifier.other
10.1007/s10107-020-01550-w
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/177278
Abstract
dc.description.abstract
We show, in Hilbert space setting, that any two convex proper lower semicontinuous functions bounded from below, for which the norm of their minimal subgradients coincide, they coincide up to a constant. Moreover, under classic boundary conditions, we provide the same results when the functions are continuous and defined over an open convex domain. These results show that for convex functions bounded from below, the slopes provide sufficient first-order information to determine the function up to a constant, giving a positive answer to the conjecture posed in Boulmezaoud et al. (SIAM J Optim 28(3):2049-2066, 2018) .
es_ES
Patrocinador
dc.description.sponsorship
ANID Chile under grant Fondecyt
1190110
1200283
3190229
ANID Chile under grant Fondecyt de Iniciacion
11180098