Show simple item record

Authordc.contributor.authorYu, Xiang 
Authordc.contributor.authorQiao, Yu 
Authordc.contributor.authorLi, Qingpeng 
Authordc.contributor.authorXu, Gang 
Authordc.contributor.authorKang, Chuanxiong 
Authordc.contributor.authorEstévez Montero, Claudio 
Authordc.contributor.authorDeng, Chengzhi 
Authordc.contributor.authorWang, Shengqian 
Admission datedc.date.accessioned2020-10-29T13:00:30Z
Available datedc.date.available2020-10-29T13:00:30Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationComplexity Volume 2020, Article ID 6589658, 17 pageses_ES
Identifierdc.identifier.other10.1155/2020/6589658
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/177465
Abstractdc.description.abstractComprehensive learning particle swarm optimization (CLPSO) is a powerful metaheuristic for global optimization. This paper studies parallelizing CLPSO by open computing language (OpenCL) on the integrated Intel HD Graphics 520 (IHDG520) graphical processing unit (GPU) with a low clock rate. We implement a coarse-grained all-GPU model that maps each particle to a separate work item. Two enhancement strategies, namely, generating and transferring random numbers from the central processor to the GPU as well as reducing the number of instructions in the kernel, are proposed to shorten the model's execution time. This paper further investigates parallelizing deterministic optimization for implicit stochastic optimization of China's Xiaowan Reservoir. The deterministic optimization is performed on an ensemble of 62 years' historical inflow records with monthly time steps, is solved by CLPSO, and is parallelized by a coarse-grained multipopulation model extended from the all-GPU model. The multipopulation model involves a large number of work items. Because of the capacity limit for a buffer transferring data from the central processor to the GPU and the size of the global memory region, the random number generation strategy is modified by generating a small number of random numbers that can be flexibly exploited by the large number of work items. Experiments conducted on various benchmark functions and the case study demonstrate that our proposed all-GPU and multipopulation parallelization models are appropriate; and the multipopulation model achieves the consumption of significantly less execution time than the corresponding sequential model.es_ES
Patrocinadordc.description.sponsorshipNational Natural Science Foundation of China (NSFC) 61703199 61866023 61865012 Shaanxi Province Natural Science Foundation Basic Research Project 2020JM-278 Central Universities Fundamental Research Foundation Project GK202003006es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceComplexityes_ES
Keywordsdc.subjectOf-the-artes_ES
Keywordsdc.subjectReservoir operationes_ES
Keywordsdc.subjectRule curveses_ES
Keywordsdc.subjectSimulationes_ES
Keywordsdc.subjectModeles_ES
Keywordsdc.subjectManagementes_ES
Keywordsdc.subjectAlgorithmes_ES
Keywordsdc.subjectSystemses_ES
Keywordsdc.subjectWateres_ES
Títulodc.titleParallelizing Comprehensive Learning Particle Swarm Optimization by Open Computing Language on an Integrated Graphical Processing Unites_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile