Show simple item record

Authordc.contributor.authorYi, J. 
Authordc.contributor.authorLi., M. L. 
Authordc.contributor.authorZhou, H. X. 
Authordc.contributor.authorRosenkranz, Andreas 
Authordc.contributor.authorWang, B. 
Authordc.contributor.authorSong, H. 
Authordc.contributor.authorJiang, N. 
Admission datedc.date.accessioned2020-11-24T18:55:55Z
Available datedc.date.available2020-11-24T18:55:55Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationCeramics International 46 (2020) 23813–23819es_ES
Identifierdc.identifier.other10.1016/j.ceramint.2020.06.157
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/177864
Abstractdc.description.abstractChemical vapor deposition (CVD) is an efficient approach to prepare coatings on complex cutting tools. However, MoS2 with self-lubrication ability and excellent tribological properties fabricated by CVD have been rarely reported in literature. The aim of this study was to deposit pure MoS2 coatings and yttrium (Y) doped MoS2 (Y/MoS2) composite coatings on cemented carbide blades coated with titanium nitride by CVD. The structural and mechanical properties of the coatings were examined by scanning electron microscopy (SEM) and nanoindentation, respectively. The results demonstrated that the microstructure of Y/MoS2 composite coatings was denser than that of the pure MoS2 coating. The hardness and the adhesional properties were significantly enhanced for the Y/MoS2 composite coatings. The tribological performance of the as-deposited coatings were investigated under atmospheric environment. Y/MoS2 compostite coatings demonstrated an enhanced tribological performance with a stable and low coefficient of friction (COF) over the entire sliding time. In contrast, the COF of pure MoS2 coating dramatically increased to value above 0.3 after a sliding time of only 30 min. Additionally, the Y/MoS2 composite coatings showed a decreased wear rate (8.36 +/- 0.29 x 10(-7) mm(3)/Nm) compared to the pure MoS2 coatings (3.41 +/- 0.48 x 10(-5) mm(3)/Nm) thus reflecting an improvement by two order of magnitude.es_ES
Patrocinadordc.description.sponsorshipNational Key Research and Development Project 2017YFE0128600 National Natural Science Foundation of China (NSFC) 51705482 Ningbo 3315 Innovation Team Y90331DL02 Science and Technology Innovation 2025 Major Project of Ningbo 2018B10046 National Defense Key Laboratory Fund 6142807180511 6142905192806 Innovation Funding of State Oceanic Administration NBHY-2017-Z3 Ningbo Industrial Technology Innovation Project 2016B10038 Foundation of State Key Laboratory of Solid lubrication LSL-1912 'Key Talents' Senior Engineer Project of Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences President's International Fellowship Initiative 2020VEC0006 ANID-CHILE Fondecyt 11180121 VID of the University of Chile U-Inicia UI013/2018es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceCeramics Internationales_ES
Keywordsdc.subjectCVDes_ES
Keywordsdc.subjectMoS2es_ES
Keywordsdc.subjectComposite coatingses_ES
Keywordsdc.subjectSolid lubricationes_ES
Títulodc.titleEnhanced tribological properties of Y/MoS2 composite coatings prepared by chemical vapor depositiones_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile