Show simple item record

Authordc.contributor.authorRodríguez Mustafa, María A. 
Authordc.contributor.authorSimon, Adam C. 
Authordc.contributor.authorReal Contreras, Irene del 
Authordc.contributor.authorThompson, John F.H. 
Authordc.contributor.authorBilenker, Laura D. 
Authordc.contributor.authorBarra Pantoja, Fernando 
Authordc.contributor.authorBindeman, Ilya 
Admission datedc.date.accessioned2021-01-26T21:42:38Z
Available datedc.date.available2021-01-26T21:42:38Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationEconomic Geology (2020) 115 (7): 1443–1459es_ES
Identifierdc.identifier.other10.5382/econgeo.4752
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178342
Abstractdc.description.abstractIron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au-poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au-rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (>500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from delta Fe-56 values of 0.11 +/- 0.07 to 0.16 +/- 0.05 parts per thousand for Quince and between 0.16 +/- 0.03 and 0.42 +/- 0.04 parts per thousand for Candelaria. Oxygen isotope compositions of magnetite range from delta O-18 values of 2.65 +/- 0.07 to 3.33 +/- 0.07 parts per thousand for Quince and between 1.16 +/- 0.07 and 7.80 +/- 0.07 parts per thousand for Candelaria. For cogenetic actinolite, delta D values range from -41.7 +/- 2.10 to -39.0 +/- 2.10 parts per thousand for Quince and from -93.9 +/- 2.10 to -54.0 +/- 2.10 parts per thousand for Candelaria, and delta O-18 values range between 5.89 +/- 0.23 and 6.02 +/- 0.23 parts per thousand for Quince and between 7.50 +/- 0.23 and 7.69 +/- 0.23 parts per thousand for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600 degrees-860 degrees C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types.es_ES
Patrocinadordc.description.sponsorshipSociety of Economic Geologists University of Michigan System National Science Foundation Earth Sciences (NSF EAR) grants 1924142 1250239 1264560 Chile's Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing Along Subduction Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1140780 NSF EAR grant 1822977es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSociety of Economic Geologists (SEG)es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceEconomic Geologyes_ES
Keywordsdc.subjectBear magmatic zonees_ES
Keywordsdc.subjectCu-Au deposites_ES
Keywordsdc.subjectKiruna-typees_ES
Keywordsdc.subjectHydrothermal alterationes_ES
Keywordsdc.subjectSoutheast Missouries_ES
Keywordsdc.subjectChemical-analysises_ES
Keywordsdc.subjectIOCG depositses_ES
Keywordsdc.subjectIOA depositses_ES
Keywordsdc.subjectOre genesises_ES
Keywordsdc.subjectOxygenes_ES
Títulodc.titleA Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetitees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile