Show simple item record

Authordc.contributor.authorPérez Fodich, Alida 
Authordc.contributor.authorDerry, Louis A. 
Admission datedc.date.accessioned2021-01-26T21:46:29Z
Available datedc.date.available2021-01-26T21:46:29Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationGeochimica et Cosmochimica Acta. Vol. 288, 1. 2020: 199-213es_ES
Identifierdc.identifier.other10.1016/j.gca.2020.07.046
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178343
Abstractdc.description.abstractGermanium is a useful tracer of silicate weathering and secondary mineral formation in the Critical Zone because Ge/Si ratios are fractionated during incongruent weathering of silicates. We develop an estimate of the equilibrium fractionation coefficient between germanium and silicon for the precipitation of kaolinite using a solid-solution model. Thermodynamic properties and distribution coefficient were estimated using observations from natural systems, experimental data from analog phyllo-germanate minerals (Shtenberg et al., 2017) and a parametric method based on a sum of oxides approach with site-specific interaction parameters (Blanc et al., 2015). The estimated log (D'(Ge-Si)) for the incorporation of Ge into kaolinite at 25 degrees C and 0.1 MPa is equal to -3.4 +/- 1.5. The estimated AG; for a fully Ge substituted kaolinite (Ge2Al2O5(OH)(4)) equals -3130 +/- 15 (kJ/mol) and the estimated log (K-sp) for Ge-kaolinite = 3.1 +/- 1.5. We further develop a series of batch reaction models using a geochemical reactive transport code to test the estimated range of the Ge-Si equilibrium fractionation coefficient. In these series of models, we also investigate how precipitation dynamics can impact the Ge/Si ratios observed both in streams and soils. These models show that both precipitation kinetics and re-equilibration of the precipitated solid control the behavior of Ge/Si ratios at far-from-equilibrium timescales. While the actual length of these timescales remains to be determined by better constraints on kaolinite precipitation rates at environmental conditions; our models suggest that the lowest groundwater measured Ge/Si ratios should represent this equilibrium timescale.es_ES
Patrocinadordc.description.sponsorshipCampus France's "Make Our Planet Great Again" short-stay program IAGC Student Grant French National Research Agency (ANR) ANR-17-MPGA-0009 National Science Foundation (NSF) EAR1349269 CONICYT PFCHA/Doctorado Becas Chile 2014-72150180es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceGeochimica et Cosmochimica Actaes_ES
Keywordsdc.subjectSilicones_ES
Keywordsdc.subjectGe/Sies_ES
Keywordsdc.subjectWeatheringes_ES
Keywordsdc.subjectKaolinitees_ES
Keywordsdc.subjectEquilibrium fractionationes_ES
Keywordsdc.subjectDistribution coefficientes_ES
Keywordsdc.subjectCritical Zonees_ES
Keywordsdc.subjectMineral Precipitationes_ES
Keywordsdc.subjectThermodynamic Dataes_ES
Keywordsdc.subjectSolubilityes_ES
Títulodc.titleA model for germanium-silicon equilibrium fractionation in kaolinitees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile