Show simple item record

Authordc.contributor.authorPaccha Herrera, Edwin 
Authordc.contributor.authorCalderón Muñoz, Williams 
Authordc.contributor.authorOrchard, Marcos 
Authordc.contributor.authorJaramillo, Francisco 
Authordc.contributor.authorMedjaher, Kamal 
Admission datedc.date.accessioned2021-03-01T13:56:24Z
Available datedc.date.available2021-03-01T13:56:24Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationBatteries-Basel (2020) 6:3es_ES
Identifierdc.identifier.other10.3390/batteries6030040
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178472
Abstractdc.description.abstractTemperature prediction of a battery plays a significant role in terms of energy efficiency and safety of electric vehicles, as well as several kinds of electric and electronic devices. In this regard, it is crucial to identify an adequate model to study the thermal behavior of a battery. This article reports a comparative study on thermal modeling approaches by using a LiCoO2 26650 lithium-ion battery, and provides a methodology to characterize electrothermal phenomena. Three approaches have been implemented numerically-a thermal lumped model, a 3D computational fluid dynamics model, and an electrochemical model based on Newman, Tiedemann, Gu and Kim formulation. The last two methods were solved using ANSYS Fluent software. Simulations were validated with experimental measurements of the cell surface temperature at constant current discharge and under a highway driving cycle. Results show that the three models are consistent with actual temperature measurements. The electrochemical method has the lower error at 0.5C. Nevertheless, this model provides the higher error (1.3 degrees C) at 1.5C, where the maximum temperature increase of the cell was 18.1 degrees C. Under the driving cycle, all the models are in the same order of error. Lumped model is suitable to simulate a wide range of battery operating conditions. Furthermore, this work was expanded to study heat generation, voltage and heat transfer coefficient under natural convection.es_ES
Patrocinadordc.description.sponsorshipSENESCYT Ecuador Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1170044es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceBatteries-Baseles_ES
Keywordsdc.subjectLithium-ion batteryes_ES
Keywordsdc.subjectMSMDes_ES
Keywordsdc.subjectLumped modeles_ES
Keywordsdc.subjectANSYSes_ES
Keywordsdc.subjectNatural convectiones_ES
Keywordsdc.subjectThermal managementes_ES
Títulodc.titleThermal modeling approaches for a LiCoO2 lithium-ion battery-a comparative study with experimental validationes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile