Show simple item record

Authordc.contributor.authorGopalakrishnan, Raja 
Authordc.contributor.authorGuevara Cue, Cristian 
Authordc.contributor.authorBen-Akiva, Moshe 
Admission datedc.date.accessioned2021-05-13T20:36:19Z
Available datedc.date.available2021-05-13T20:36:19Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationTransportation Research Part B 142 (2020) 45–57es_ES
Identifierdc.identifier.other10.1016/j.trb.2020.10.002
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179611
Abstractdc.description.abstractWhile collecting data for estimating discrete-choice models, researchers often encounter missing information in observations. In addition, endogeneity can occur whenever the error term is not independent of the observed variables. Both problems result in inconsistent estimators of the model parameters. The problems of missing information and endogeneity may occur in the same variable in the data, if, e.g., partially missing price information is correlated with another omitted variable. Extant approaches to correct for endogeneity in discrete choice models, such as the control function method, do not address the problem when the error term is correlated with a variable having missing information. Likewise, approaches to address missing information, such as the multiple imputation method, cannot handle endogeneity problems. To address this challenge, we propose a novel hybrid algorithm by combining the methods of multiple imputation and the control function. We validate the algorithm in a Monte-Carlo experiment and apply it to real data of heavy commercial vehicle parking from Singapore. In this case study, we were able to substantially correct for price endogeneity in the presence of missing price information.es_ES
Patrocinadordc.description.sponsorshipMinistry of National Development, Singapore National Research Foundation, Prime Minister's Office L2 NIC L2 NICTDF1-2016-1 Urban Redevelopment Authority of Singapore Land Transport Authority of Singapore Housing and Development Board of Singapore Ministry of Railways, Government of India Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1191104 ANID PIA/BASAL AFB180003es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceTransportation Research Part B-Methodologicales_ES
Keywordsdc.subjectImputationes_ES
Keywordsdc.subjectMissing dataes_ES
Keywordsdc.subjectEndogeneityes_ES
Keywordsdc.subjectDiscrete choicees_ES
Keywordsdc.subjectControl functiones_ES
Keywordsdc.subjectMonte-Carlo simulation;es_ES
Keywordsdc.subjectMissing at randomes_ES
Keywordsdc.subjectLimited information maximum likelihoodes_ES
Keywordsdc.subjectUrban freightes_ES
Keywordsdc.subjectCommercial vehicle parkinges_ES
Títulodc.titleCombining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice modelses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile