Show simple item record

Authordc.contributor.authorFekete, Dorottya 
Authordc.contributor.authorFontbona Torres, Joaquín 
Authordc.contributor.authorKyprianou, Andreas 
Admission datedc.date.accessioned2021-05-13T21:00:09Z
Available datedc.date.available2021-05-13T21:00:09Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationApplied Probability Trust (20 April 2020)es_ES
Identifierdc.identifier.other10.1017/jpr.2020.53
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179612
Abstractdc.description.abstractIt is well understood that a supercritical superprocess is equal in law to a discrete Markov branching process whose genealogy is dressed in a Poissonian way with immigration which initiates subcritical superprocesses. The Markov branching process corresponds to the genealogical description of prolific individuals, that is, individuals who produce eternal genealogical lines of descent, and is often referred to as the skeleton or backbone of the original superprocess. The Poissonian dressing along the skeleton may be considered to be the remaining non-prolific genealogical mass in the superprocess. Such skeletal decompositions are equally well understood for continuous-state branching processes (CSBP). In a previous article [16] we developed an SDE approach to study the skeletal representation of CSBPs, which provided a common framework for the skeletal decompositions of supercritical and (sub)critical CSBPs. It also helped us to understand how the skeleton thins down onto one infinite line of descent when conditioning on survival until larger and larger times, and eventually forever. Here our main motivation is to show the robustness of the SDE approach by expanding it to the spatial setting of superprocesses. The current article only considers supercritical superprocesses, leaving the subcritical case open.es_ES
Patrocinadordc.description.sponsorshipUK Research & Innovation (UKRI) Engineering & Physical Sciences Research Council (EPSRC) EP/L002442/1 UK Research & Innovation (UKRI) Engineering & Physical Sciences Research Council (EPSRC) Basal-Conicyt Centre for Mathematical Modelling AFB 170001 Millennium Nucleus SMCDSes_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherCambridge Univ.es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Applied Probabilityes_ES
Keywordsdc.subjectSuperprocesseses_ES
Keywordsdc.subjectSDEses_ES
Keywordsdc.subjectSkeletal decompositiones_ES
Títulodc.titleSkeletal stochastic differential equations for superprocesseses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile