Show simple item record

Authordc.contributor.authorMartínez Ledesma, Miguel 
Authordc.contributor.authorJaramillo Montoya, Francisco 
Admission datedc.date.accessioned2021-05-13T21:59:07Z
Available datedc.date.available2021-05-13T21:59:07Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationEarth, Planets and Space (2020) 72:172es_ES
Identifierdc.identifier.other10.1186/s40623-020-01297-w
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179619
Abstractdc.description.abstractSimultaneously estimating plasma parameters of the ionosphere presents a problem for the incoherent scatter radar (ISR) technique at altitudes between ~ 130 and ~ 300 km. Different mixtures of ion concentrations and temperatures generate almost identical backscattered signals, hindering the discrimination between plasma parameters. This temperature– ion composition ambiguity problem is commonly solved either by using models of ionospheric parameters or by the addition of parameters determined from the plasma line of the radar. Some studies demonstrated that it is also possible to unambiguously estimate ISR signals with very low signal fluctuation using the most frequently used non-linear least squares (NLLS) fitting algorithm. In a previous study, the unambiguous estimation performance of the particle swarm optimization (PSO) algorithm was evaluated, outperforming the standard NLLS algorithm fitting signals with very small fluctuations. Nevertheless, this study considered a confined search range of plasma parameters assuming a priori knowledge of the behavior of the ion composition and signals with very large SNR obtained at the Arecibo Observatory, which are not commonly feasible at other ISR facilities worldwide. In the present study, we conduct Monte Carlo simulations of PSO fittings to evaluate the performance of this algorithm at different signal fluctuation levels. We also determine the effect of adding different combinations of parameters known from the plasma line, different search ranges, and internal configurations of PSO parameters. Results suggest that similar performances are obtained by PSO and NLLS algorithms, but PSO has much larger computational requirements. The PSO algorithm obtains much lower convergences when no a priori information is provided. The a priori knowledge of Ne and Te/Ti parameters shows better convergences and “correct” estimations. Also, results demonstrate that the addition of Ne and Te parameters provides the most information to solve the ambiguity problem using both optimization algorithms.es_ES
Patrocinadordc.description.sponsorshipUnited States Department of Defense Air Force Office of Scientific Research (AFOSR) FA955019-1-0384 Comite Mixto ESO-Chile ORP061/19 NLHPC ECM-02es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceEarth, Planets and Spacees_ES
Keywordsdc.subjectTemperature-ion composition ambiguityes_ES
Keywordsdc.subjectLonospheric plasma parameterses_ES
Keywordsdc.subjectIncoherent scatter radares_ES
Keywordsdc.subjectMonte Carlo simulationes_ES
Keywordsdc.subjectOptimization algorithmses_ES
Keywordsdc.subjectParticle swarm optimization algorithmes_ES
Títulodc.titlePerformance evaluation of the particle swarm optimization algorithm to unambiguously estimate plasma parameters from incoherent scatter radar signalses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile