Subdifferential of the supremum function: moving back and forth between continuous and non-continuous settings
| Author | dc.contributor.author | Correa, R. | |
| Author | dc.contributor.author | Hantoute, A. | |
| Author | dc.contributor.author | López, M. A. | |
| Admission date | dc.date.accessioned | 2021-05-24T20:04:07Z | |
| Available date | dc.date.available | 2021-05-24T20:04:07Z | |
| Publication date | dc.date.issued | 2020 | |
| Cita de ítem | dc.identifier.citation | Mathematical Programming Nov 2020 | es_ES |
| Identifier | dc.identifier.other | 10.1007/s10107-020-01592-0 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/179758 | |
| Abstract | dc.description.abstract | In this paper we establish general formulas for the subdifferential of the pointwise supremum of convex functions, which cover and unify both the compact continuous and the non-compact non-continuous settings. From the non-continuous to the continuous setting, we proceed by a compactification-based approach which leads us to problems having compact index sets and upper semi-continuously indexed mappings, giving rise to new characterizations of the subdifferential of the supremum by means of upper semicontinuous regularized functions and an enlarged compact index set. In the opposite sense, we rewrite the subdifferential of these new regularized functions by using the original data, also leading us to new results on the subdifferential of the supremum. We give two applications in the last section, the first one concerning the nonconvex Fenchel duality, and the second one establishing Fritz-John and KKT conditions in convex semi-infinite programming. | es_ES |
| Patrocinador | dc.description.sponsorship | Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) Fondecyt 1190012 1190110 Proyecto/Grant PIA AFB-170001 MICIU of Spain Universidad de Alicante BEAGAL 18/00205 Spanish Government PGC2018-097960-B-C21 Australian Research Council DP 180100602 | es_ES |
| Lenguage | dc.language.iso | en | es_ES |
| Publisher | dc.publisher | Springer | es_ES |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | * |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
| Source | dc.source | Mathematical Programming | es_ES |
| Keywords | dc.subject | Supremum of convex functions | es_ES |
| Keywords | dc.subject | Subdifferentials | es_ES |
| Keywords | dc.subject | Stone– Č | es_ES |
| Keywords | dc.subject | Ech compactification | es_ES |
| Keywords | dc.subject | Convex semi-infinite programming | es_ES |
| Keywords | dc.subject | Fritz-John and KKT optimality conditions | es_ES |
| Título | dc.title | Subdifferential of the supremum function: moving back and forth between continuous and non-continuous settings | es_ES |
| Document type | dc.type | Artículo de revista | |
| dcterms.accessRights | dcterms.accessRights | Acceso Abierto | |
| Cataloguer | uchile.catalogador | cfr | es_ES |
| Indexation | uchile.index | Artículo de publicación ISI | es_ES |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas

