Show simple item record

Authordc.contributor.authorFigueroa Barraza, Joaquín 
Authordc.contributor.authorLópez Droguett, Enrique 
Authordc.contributor.authorMeruane Naranjo, Viviana 
Authordc.contributor.authorRamos Martins, Marcelo 
Admission datedc.date.accessioned2021-06-24T20:43:44Z
Available datedc.date.available2021-06-24T20:43:44Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationApplied Soft Computing Journal 97 (2020) 106732es_ES
Identifierdc.identifier.other10.1016/j.asoc.2020.106732
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/180236
Abstractdc.description.abstractOne of the current challenges in structural health monitoring (SHM) is to take the most advantage of large amounts of data to deliver accurate damage measurements and predictions. Deep Learning methods tackle these problems by finding complex relations hidden in the data available. Amongst these, Capsule Neural Networks (CapsNets) have recently been developed, achieving promising results in benchmark Deep Learning problems. In this paper, Capsule Networks are expanded to locate and to quantify structural damage. The proposed approach is evaluated in two case studies: a system with springs and masses that simulate a structure, and a beam with different damage scenarios. For both case studies, training and validation sets are created using Finite Element (FE) models and calibrated with experimental data, which is also used for testing. The main contributions of this study are: A novel CapsNets-based method for dual classification–regression task in SHM, analysis of both routing algorithms (dynamic routing and Expectation–Maximization routing) in the context of SHM, and analysis of generalization between FE models and real-life experiments. The results show that the proposed Capsule Networks with dynamic routing achieve better results than Convolutional Neural Networks (CNN), especially when it comes to false positive values.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190720es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceApplied Soft Computinges_ES
Keywordsdc.subjectVibration-based damage assessmentes_ES
Keywordsdc.subjectStructural health monitoringes_ES
Keywordsdc.subjectTransmissibility functionses_ES
Keywordsdc.subjectCapsule networkses_ES
Keywordsdc.subjectConvolutional Neural Networkses_ES
Títulodc.titleCapsule neural networks for structural damage localization and quantification using transmissibility dataes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile