Show simple item record

Authordc.contributor.authorBagaram, Martin B. 
Authordc.contributor.authorToth, Sandor F. 
Authordc.contributor.authorJaross, Weikko S. 
Authordc.contributor.authorWeintraub Pohorille, Andrés 
Admission datedc.date.accessioned2021-07-02T01:16:11Z
Available datedc.date.available2021-07-02T01:16:11Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationAdvances in Operations Research Volume 2020, Article ID 8965679, 17 pageses_ES
Identifierdc.identifier.other10.1155/2020/8965679
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/180381
Abstractdc.description.abstractLong time horizons, typical of forest management, make planning more difficult due to added exposure to climate uncertainty. Current methods for stochastic programming limit the incorporation of climate uncertainty in forest management planning. To account for climate uncertainty in forest harvest scheduling, we discretize the potential distribution of forest growth under different climate scenarios and solve the resulting stochastic mixed integer program. Increasing the number of scenarios allows for a better approximation of the entire probability space of future forest growth but at a computational expense. To address this shortcoming, we propose a new heuristic algorithm designed to work well with multistage stochastic harvest-scheduling problems. Starting from the root-node of the scenario tree that represents the discretized probability space, our progressive hedging algorithm sequentially fixes the values of decision variables associated with scenarios that share the same path up to a given node. Once all variables from a node are fixed, the problem can be decomposed into subproblems that can be solved independently. We tested the algorithm performance on six forests considering different numbers of scenarios. The results showed that our algorithm performed well when the number of scenarios was large.es_ES
Patrocinadordc.description.sponsorshipPrecision Forestry Coop of the University of Washington AFB180003 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1191531es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherHindawies_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAdvances in Operations Researches_ES
Keywordsdc.subjectScenario generationes_ES
Keywordsdc.subjectClimate-changees_ES
Keywordsdc.subjectUncertaintyes_ES
Keywordsdc.subjectManagementes_ES
Keywordsdc.subjectAlgorithmes_ES
Keywordsdc.subjectDecompositiones_ES
Keywordsdc.subjectOptimizationes_ES
Keywordsdc.subjectDemandes_ES
Keywordsdc.subjectModelses_ES
Keywordsdc.subjectBoundses_ES
Títulodc.titleA parallelized variable fixing process for solving multisge stochastic programs with progressive hedginges_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile