Hopf-algebraic deformations of products and wick polynomials
Author
dc.contributor.author
Ebrahimi-Fard, Kurusch
Author
dc.contributor.author
Patras, Frédéric
Author
dc.contributor.author
Tapia, Nikolas
Author
dc.contributor.author
Zambotti, Lorenzo
Admission date
dc.date.accessioned
2021-07-07T21:52:51Z
Available date
dc.date.available
2021-07-07T21:52:51Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
International Mathematics Research Notices, Vol. 2020, No. 24, pp. 10064–10099
es_ES
Identifier
dc.identifier.other
10.1093/imrn/rny269
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/180497
Abstract
dc.description.abstract
We present an approach to cumulant–moment relations and Wick polynomials based on
extensive use of convolution products of linear functionals on a coalgebra. This allows,
in particular, to understand the construction ofWick polynomials as the result of a Hopf
algebra deformation under the action of linear automorphisms induced by multivariate
moments associated to an arbitrary family of random variables with moments of all
orders. We also generalize the notion of deformed product in order to discuss how these
ideas appear in the recent theory of regularity structures.
es_ES
Patrocinador
dc.description.sponsorship
"Combinatoire Algebrique, Resurgence, Moules et Applications" (CARMA)
ANR-12-BS01-0017
Fondation Sciences Mathematiques de Paris
Programa Iniciativa Cientifica Milenio through Nucleus Millenium Stochastic Models of Complex and Disordered Systems
NC120062
European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant
691070
French National Research Agency (ANR)
ANR-15-CE40-0020-01
CONICYT/Doctorado Nacional/2013-21130733