Index of symmetry and topological classification of asymmetric normed spaces.
Author
dc.contributor.author
Bachir, Mohammed
Author
dc.contributor.author
Flores, Gonzalo
Admission date
dc.date.accessioned
2021-07-13T21:41:15Z
Available date
dc.date.available
2021-07-13T21:41:15Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Rocky Mountain Journal of Mathematics (2020) 50:6 pp. 1951-1964
es_ES
Identifier
dc.identifier.other
10.1216/rmj.2020.50.1951
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/180584
Abstract
dc.description.abstract
Let X, Y be asymmetric normed spaces and Lc(X, Y ) the
convex cone of all linear continuous operators from X to Y . It is known
that in general, Lc(X, Y ) is not a vector space. The aim of this note is to
give, using the Baire category theorem, a complete cracterization on X
and a finite dimensional Y so that Lc(X, Y ) is a vector space. For this,
we introduce an index of symmetry of the space X denoted c(X) 2 [0, 1]
and we give the link between the index c(X) and the fact that Lc(X, Y )
is in turn an asymmetric normed space for every asymmetric normed
space Y . Our study leads to a topological classification of asymmetric
normed spaces.
es_ES
Patrocinador
dc.description.sponsorship
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 1171854
CMM-CONICYT AFB-170001
CONICYT-PFCHA/Doctorado Nacional/2017-21170003
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Rocky MT Math Consortiumariz State Univ, Dept Math