Show simple item record

Authordc.contributor.authorXie, Feiyi 
Authordc.contributor.authorWen, Hong 
Authordc.contributor.authorWu, Jinsong 
Authordc.contributor.authorChen, Songlin 
Authordc.contributor.authorHou, Wenjing 
Authordc.contributor.authorJiang, Yixin 
Admission datedc.date.accessioned2021-08-29T19:29:02Z
Available datedc.date.available2021-08-29T19:29:02Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationIEEE Transactions on Network Science and Engineering, Vol. 7, No. 4, October-December 2020es_ES
Identifierdc.identifier.other10.1109/TNSE.2019.2957323
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/181611
Abstractdc.description.abstractIn this article, a convolutional neural network (CNN) enhanced radio frequency fingerprinting (RFF) authentication scheme is presented for Internet of things (IoT). RFF is a non-cryptographic authentication technology, identifies devices through the waveforms of the RF transient signals by processing received RF signals on the edge server, which places no cost burden to low-end (low-cost) devices without implementing any encryption algorithmand meet the demands of the real-time access authentication in Internet of things. In the new scheme, the feasibility of extracting features based on one-dimensional (1D) signal convolution is discussed, referring to the method of extracting features from CNN, and combining with the characteristics of signal convolution. A convolution kernel for 1D signals is designed to extract the feature of signals in order to reduce training time and ensure classification accuracy. Therefore, it can improve the accuracy compared with these traditional algorithms, while saving the training time of updating parameters repeatedly as the neural network. The accuracy and training time of thealgorithm are verified in a real signal acquisition system. The results prove that the novel algorithm can effectively improve the classification accuracy in low signal-to-noise ratio (SNR), while keeps the training time in an acceptable range.es_ES
Patrocinadordc.description.sponsorshipNational major RD program 2018YFB0904900 2018YFB0904905 Sichuan sci and tech service developement project 18KJFWSF0368 Chile CONICYT 181809 Sichuan sci and tech basic research condition platform project 2018TJPT0041es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE Computer Soces_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Transactions on Network Science and Engineeringes_ES
Keywordsdc.subjectAccess authenticationes_ES
Keywordsdc.subjectConvolutiones_ES
Keywordsdc.subjectEdge computinges_ES
Keywordsdc.subjectFeature extractiones_ES
Keywordsdc.subjectRadio frequency fingerprinting (RFF)es_ES
Títulodc.titleConvolution based feature extraction for edge computing access authenticationes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile