Show simple item record

Professor Advisordc.contributor.advisorSilva Sánchez, Jorge
Professor Advisordc.contributor.advisorOrchard Concha, Marcos
Authordc.contributor.authorGonzález Gutiérrez, Mauricio Esteban 
Associate professordc.contributor.otherMedjaher, Kamal
Associate professordc.contributor.otherTobar Henríquez, Felipe
Admission datedc.date.accessioned2021-09-01T15:42:14Z
Available datedc.date.available2021-09-01T15:42:14Z
Publication datedc.date.issued2021
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/181712
General notedc.descriptionTesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctricaes_ES
General notedc.descriptionMemoria para optar al título de Ingeniero Civil Eléctrico
Abstractdc.description.abstractTypically, model-based prognostic algorithms estimate the remaining-useful-life distribution by characterizing the probable system trajectories described through state-space models. Unfortunately, as the state dimension increases or the prognostic horizon enlarges, the computational time of such algorithms augments considerably, complicating their real-time execution. To overcome this difficulty, this work proposes a paradigm change in model-based prognostic algorithms; instead of tracking the state-space trajectories, a Fast-Running Markov Chain-based Prognostic Algorithm (FRMC-PA) is proposed, capable of estimating the time-of-failure probability mass function directly. FRMC-PA is based on a two-state non-homogeneous discrete-time Markov chain, where state 0 describes the operative situation and state 1 represents a catastrophic failure event. FRMC-PA is composed of two stages: i) offline stage, which leverages historical data to train a regression model that maps the system variables to the transition probabilities of the binary-stochastic process; ii) online stage, which combines the regression model built previously and real-time observations to estimate the system s remaining useful life. This method is validated using the case study of battery discharge. Results show that FRMC-PA can transfer most of the computational cost to the offline stage, achieving an online computational-time reduction of 99% compared with a Monte-Carlo-based prognostic, without significantly sacrificing the prognostic accuracy.es_ES
Patrocinadordc.description.sponsorshipANID Chile – ANID-PFCHA/MagísterNacional/2019-22191445es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectProcesos estocásticos - Modelos matemáticos
Keywordsdc.subjectProcesos de Markov
Keywordsdc.subjectAlgoritmos computacionales
Keywordsdc.subjectTiempo de falla
Títulodc.titleA fast-running failure prognostic algorithm based on a non-homogeneous markov chaines_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.titulacionuchile.titulacionDoble Titulaciónes_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile