Show simple item record

Authordc.contributor.authorPanay Schweizer, Belisario
Authordc.contributor.authorBaloian Tataryan, Nelson
Authordc.contributor.authorPino Urtubia, José Alberto
Authordc.contributor.authorPeñafiel, Sergio
Authordc.contributor.authorFrez, Jonathan
Authordc.contributor.authorFuenzalida, Cristóbal
Authordc.contributor.authorSansón, Horacio
Authordc.contributor.authorZurita Alarcón, Gustavo Nyles
Admission datedc.date.accessioned2021-11-05T14:32:41Z
Available datedc.date.available2021-11-05T14:32:41Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationSensors 2021, 21, 1874es_ES
Identifierdc.identifier.other10.3390/s21051874
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182618
Abstractdc.description.abstractFoot traffic, conversion rate, and total sales during a period of time may be considered to be important indicators of store performance. Forecasting them may allow for business managers plan stores operation in the near future in an efficient way. This work presents a regression method that is able to predict these three indicators based on previous data. The previous data includes values for the indicators in the recent past; therefore, it is a requirement to have gathered them in a suitable manner. The previous data also considers other values that are easily obtained, such as the day of the week and hour of the day of the indicators. The novelty of the approach that is presented here is that it provides a confidence interval for the predicted information and the importance of each parameter for the predicted output values, without additional processing or analysis. Real data gathered by Follow Up, a customer experience company, was used to test the proposed method. The method was tried for making predictions for up to one month in the future. The results of the experiments show that the proposed method has a comparable performance to the best methods proposed in the past that do not provide confidence intervals or parameter rankings. The method obtains RMSE of 0.0713 for foot traffic prediction, 0.0795 for conversion rate forecasting, and 0.0757 for sales prediction.es_ES
Patrocinadordc.description.sponsorshipCORFO: Chilean agency to support entrepreneurship, innovation and competitivenesses_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceSensorses_ES
Keywordsdc.subjectDempster-Shafer theoryes_ES
Keywordsdc.subjectEvidence regressiones_ES
Keywordsdc.subjectSupervised learninges_ES
Keywordsdc.subjectRetail indicatorses_ES
Keywordsdc.subjectFoot traffic predictiones_ES
Keywordsdc.subjectTime series regression problemses_ES
Títulodc.titleForecasting key retail performance indicators using interpretable regressiones_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publícación WoSes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States