Show simple item record

Authordc.contributor.authorCartagena Villalobos, Óscar Andrés
Authordc.contributor.authorParra Flores, Sebastián Alfonso Iván
Authordc.contributor.authorMuñoz Carpintero, Diego
Authordc.contributor.authorMarín, Luis G.
Authordc.contributor.authorSáez Hueichapan, Doris Andrea
Admission datedc.date.accessioned2021-11-15T19:52:47Z
Available datedc.date.available2021-11-15T19:52:47Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationIEEE Access 2021.3056003es_ES
Identifierdc.identifier.other10.1109/ACCESS.2021.3056003
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182704
Abstractdc.description.abstractThe existing uncertainties during the operation of processes could strongly affect the performance of forecasting systems, control strategies and fault detection systems when they are not considered in the design. Because of that, the study of uncertainty quantification has gained more attention among the researchers during past decades. From this field of study, the prediction intervals arise as one of the techniques most used in literature to represent the effect of uncertainty over the future process behavior. Thus, researchers have focused on developing prediction intervals based on the use of fuzzy systems and neural networks, thanks to their usefulness for represent a wide range of processes as universal approximators. In this work, a review of the state-of-the-art of methodologies for prediction interval modelling based on fuzzy systems and neural networks is presented. The main characteristics of each method for prediction interval construction are presented and some recommendations are given for selecting the most appropriate method for specific applications. To illustrate the advantages of these methodologies, a comparative analysis of selected methods of prediction intervals is presented, using a benchmark series and real data from solar power generation of a microgrid.es_ES
Patrocinadordc.description.sponsorshipFunding agency Grant number Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1170683 Solar Energy Research Center SERC-Chile ANID/FONDAP/15110019 Instituto Sistemas Complejos de Ingenieria (ISCI) under grant ANID PIA/BASAL AFB180003 ANID/PAI Convocatoria Nacional Subvencion a Instalacion en la Academia Convocatoria PAI77190021 ANID-PFCHA/Doctorado Nacional 21200709es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEEes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Accesses_ES
Keywordsdc.subjectPredictive modelses_ES
Keywordsdc.subjectUncertaintyes_ES
Keywordsdc.subjectData modelses_ES
Keywordsdc.subjectProbability density functiones_ES
Keywordsdc.subjectFuzzy logices_ES
Keywordsdc.subjectNonlinear dynamical systemses_ES
Keywordsdc.subjectArtificial neural networkses_ES
Keywordsdc.subjectPrediction intervalses_ES
Keywordsdc.subjectFuzzy intervales_ES
Keywordsdc.subjectNeural network intervalses_ES
Keywordsdc.subjectUncertaintyes_ES
Títulodc.titleReview on fuzzy and neural prediction interval modelling for nonlinear dynamical systemses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States