Show simple item record

Authordc.contributor.authorLei, Wenxin
Authordc.contributor.authorWen, Hong
Authordc.contributor.authorWu, Jinsong
Authordc.contributor.authorHou, Wenjing
Admission datedc.date.accessioned2021-11-23T21:42:51Z
Available datedc.date.available2021-11-23T21:42:51Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationAppl. Sci. 2021, 11, 3101es_ES
Identifierdc.identifier.other10.3390/app11073101
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182837
Abstractdc.description.abstractAdvanced communication and information technologies enable smart grids to be more intelligent and automated, although many security issues are emerging. Security situational awareness (SSA) has been envisioned as a potential approach to provide safe services for power systems' operation. However, in the power cloud master station mode, massive heterogeneous power terminals make SSA complicated, and failure information cannot be promptly delivered. Moreover, the dynamic and continuous situational space also increases the challenges of SSA. By taking advantages of edge intelligence, this paper introduces edge computing between terminals and the cloud to address the drawbacks of the traditional power cloud paradigm. Moreover, a deep reinforcement learning algorithm based on the edge computing paradigm of multiagent deep deterministic policy gradient (MADDPG) is proposed. The minimum processing cost under the premise of minimum detection error rate is taken to analyze the smart grids' SSA. Performance evaluations show that the algorithm under this paradigm can achieve faster convergence and the optimal goal, namely the provision of real-time protection for smart grids.es_ES
Patrocinadordc.description.sponsorshipNational major RD program 2018YFB0904900 2018YFB0904905 Chile CONICYT FONDECYT Regular 1181809 Chile CONICYT FONDEF ID16I10466es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceApplied Scienceses_ES
Keywordsdc.subjectSmart grides_ES
Keywordsdc.subjectSituational awarenesses_ES
Keywordsdc.subjectEdge computinges_ES
Keywordsdc.subjectMulti-agent DDPGes_ES
Keywordsdc.subjectDeep reinforcement learninges_ES
Títulodc.titleMADDPG-Based security situational awareness for smart grid with intelligent edgees_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States