Show simple item record

Authordc.contributor.authorSoto San Martín, José Antonio
Authordc.contributor.authorTurkieltaub, Abner
Authordc.contributor.authorVerdugo, Víctor
Admission datedc.date.accessioned2021-11-27T15:36:14Z
Available datedc.date.available2021-11-27T15:36:14Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationMathematics of Operations Research Volume 46 Issue 2 Page 642-673 May 2021es_ES
Identifierdc.identifier.other10.1287/moor.2020.1083
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182906
Abstractdc.description.abstractIn the ordinal matroid secretary problem (MSP), candidates do not reveal numerical weights, but the decision maker can still discern if a candidate is better than another. An algorithm alpha is probability-competitive if every element from the optimum appears with probability 1/alpha in the output. This measure is stronger than the standard utility competitiveness. Our main result is the introduction of a technique based on forbidden sets to design algorithms with strong probability-competitive ratios on many matroid classes. We improve upon the guarantees for almost every matroid class considered in the MSP literature. In particular, we achieve probability-competitive ratios of 4 for graphic matroids and of 3 root 3 approximate to 5.19 for laminar matroids. Additionally, we modify Kleinberg's utility-competitive algorithm for uniform matroids in order to obtain an asymptotically optimal probability-competitive algorithm. We also contribute algorithms for the ordinal MSP on arbitrary matroids.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherInformses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceMathematics of Operations Researches_ES
Keywordsdc.subjectSecretary problemes_ES
Keywordsdc.subjectMatroidses_ES
Keywordsdc.subjectOnline algorithmses_ES
Títulodc.titleStrong algorithms for the ordinal matroid secretary problemes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión sometida a revisión - Preprintes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States