Show simple item record

Authordc.contributor.authorPalma, Gisella
Authordc.contributor.authorReich Morales, Martín Herbert
Authordc.contributor.authorBarra Pantoja, Luis Fernando
Authordc.contributor.authorOvalle, J. Tomás
Authordc.contributor.authorReal, Irene del
Authordc.contributor.authorSimon, Adam C.
Admission datedc.date.accessioned2021-12-21T20:33:08Z
Available datedc.date.available2021-12-21T20:33:08Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationScientifc Reports (2021) 11:18424es_ES
Identifierdc.identifier.other10.1038/s41598-021-97883-3
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183339
Abstractdc.description.abstractMagnetite is the main constituent of iron oxide–apatite (IOA) deposits, which are a globally important source of Fe and other elements such as P and REE, critical for modern technologies. Geochemical studies of magnetite from IOA deposits have provided key insights into the ore-forming processes and source of mineralizing fuids. However, to date, only qualitative estimations have been obtained for one of the key controlling physico-chemical parameters, i.e., the temperature of magnetite formation. Here we reconstruct the thermal evolution of Andean IOA deposits by using magnetite thermometry. Our study comprised a > 3000 point geochemical dataset of magnetite from several IOA deposits within the Early Cretaceous Chilean Iron Belt, as well as from the Pliocene El Laco IOA deposit in the Chilean Altiplano. Thermometry data reveal that the deposits formed under a wide range of temperatures, from purely magmatic (~ 1000 to 800 °C), to late magmatic or magmatic-hydrothermal (~ 800 to 600 °C), to purely hydrothermal (< 600 °C) conditions. Magnetite cooling trends are consistent with genetic models invoking a combined igneous and magmatic-hydrothermal origin that involve Fe-rich fuids sourced from intermediate silicate magmas. The data demonstrate the potential of magnetite thermometry to better constrain the thermal evolution of IOA systems worldwide, and help refne the geological models used to fnd new resources.es_ES
Patrocinadordc.description.sponsorshipANID through Millennium Science Initiative Program NCN13_065 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190105 ANID-FONDAP project "Centro de Excelencia en Geotermia de Los Andes, CEGA" 15090013es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherNaturees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceScientifc Reportses_ES
Keywordsdc.subjectEl-lacocopper-goldes_ES
Keywordsdc.subjectIsotope signatureses_ES
Keywordsdc.subjectTrace-elementses_ES
Keywordsdc.subjectKirunaes_ES
Keywordsdc.subjectGeochemistryes_ES
Keywordsdc.subjectBearinges_ES
Keywordsdc.subjectOrigines_ES
Keywordsdc.subjectReequilibrationes_ES
Títulodc.titleThermal evolution of Andean iron oxide-apatite (IOA) deposits as revealed by magnetite thermometryes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States