Show simple item record

Authordc.contributor.authorVerma, S. K.
Authordc.contributor.authorThirumurugan, A.
Authordc.contributor.authorPanda, P. K.
Authordc.contributor.authorPatel, P.
Authordc.contributor.authorNandi, A.
Authordc.contributor.authorJha, E.
Authordc.contributor.authorPrabakaran, K.
Authordc.contributor.authorUdayabhaskar, R.
Authordc.contributor.authorMangalaraja, R. V.
Authordc.contributor.authorMishra, Y. K.
Authordc.contributor.authorAkbari Fakhrabadi, A.
Authordc.contributor.authorMorel, M. J.
Authordc.contributor.authorSuar, M.
Authordc.contributor.authorAhuja, R.
Admission datedc.date.accessioned2022-01-10T14:15:11Z
Available datedc.date.available2022-01-10T14:15:11Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationMaterials Today Bio 12 (2021) 100131es_ES
Identifierdc.identifier.other10.1016/j.mtbio.2021.100131
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183587
Abstractdc.description.abstractRecent advancement in nanotechnology seeks exploration of new techniques for improvement in the molecular, chemical, and biological properties of nanoparticles. In this study, carbon modification of octahedral-shaped magnetic nanoparticles (MNPs) was done using two-step chemical processes with sucrose as a carbon source for improvement in their electrochemical application and higher molecular biocompatibility. X-ray diffraction analysis and electron microscopy confirmed the alteration in single-phase octahedral morphology and carbon attachment in Fe3O4 structure. The magnetization saturation and BET surface area for Fe3O4, Fe3O4/C, and alpha-Fe2O3/C were measured as 90, 86, and 27 emu/g and 16, 56, and 89 m2/g with an average pore size less than 7 nm. Cyclic voltammogram and galvanostatic charge/discharge studies showed the highest specific capacitance of carbon-modified Fe3O4 and alpha-Fe2O3 as 213 F/g and 192 F/g. The in vivo biological effect of altered physicochemical properties of Fe3O4 and alpha-Fe2O3 was assessed at the cellular and molecular level with embryonic zebrafish. Mechanistic in vivo toxicity analysis showed a reduction in oxidative stress in carbon-modified alpha-Fe2O3 exposed zebrafish embryos compared to Fe3O4 due to despaired infiuential atomic interaction with sod1 protein along with significant less morphological abnormalities and apoptosis. The study provided insight into improving the characteristic of MNPs for electrochemical application and higher biological biocompatibility.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3170696 University of ATACAMA Swedish Research Council European Commission VR-2016-06014 Interreg Deuts-chland-Denmark European Commission 096-1.1-18 DBT-BUILDER program BT/INF/22/SP42155/2021 PAI77190056es_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceMaterials Today Bioes_ES
Keywordsdc.subjectMagnetic nanoparticleses_ES
Keywordsdc.subjectSuper capacitorses_ES
Keywordsdc.subjectToxicityes_ES
Keywordsdc.subjectZebrafishes_ES
Keywordsdc.subjectOxidative stresses_ES
Keywordsdc.subjectApoptosies_ES
Títulodc.titleAltered electrochemical properties of iron oxide nanoparticles by carbon enhance molecular biocompatibility through discrepant atomic interactiones_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States