New tour on the subdifferential of supremum via finite sums and suprema
Author
dc.contributor.author
Hantoute, Abderrahim
Author
dc.contributor.author
López Cerda, Mauricio Alfredo
Admission date
dc.date.accessioned
2022-01-20T15:38:10Z
Available date
dc.date.available
2022-01-20T15:38:10Z
Publication date
dc.date.issued
2021
Cita de ítem
dc.identifier.citation
Journal of Optimization Theory and Applications Oct 2021
es_ES
Identifier
dc.identifier.other
10.1007/s10957-021-01925-9
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/183775
Abstract
dc.description.abstract
This paper provides new characterizations for the subdifferential of the pointwise supremum of an arbitrary family of convex functions. The main feature of our approach is that the normal cone to the effective domain of the supremum (or to finite-dimensional sections of it) does not appear in our formulas. Another aspect of our analysis is that it emphasizes the relationship with the subdifferential of the supremum of finite subfamilies, or equivalently, finite weighted sums. Some specific results are given in the setting of reflexive Banach spaces, showing that the subdifferential of the supremum can be reduced to the supremum of a countable family.
es_ES
Patrocinador
dc.description.sponsorship
ANID-Fondecyt 1190012
Proyecto/Grant PIA AFB-170001
MICIU of Spain
Universidad de Alicante (Contract Beatriz Galindo) BEA-GAL 18/00205
Spanish Government PGC2018-097960-B-C21
Australian Research Council DP 180100602
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Springer
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States