Show simple item record

Professor Advisordc.contributor.advisorDíaz Quezada, Marcos
Professor Advisordc.contributor.advisorBergel, Alexandre
Authordc.contributor.authorGonzález Cortés, Carlos Eduardo
Associate professordc.contributor.otherCéspedes Umaña, Sandra Lorena
Associate professordc.contributor.otherFraire, Juan Andrés
Associate professordc.contributor.otherNakasuka, Shinichi
Admission datedc.date.accessioned2022-03-29T22:21:35Z
Available datedc.date.available2022-03-29T22:21:35Z
Publication datedc.date.issued2022
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/184600
Abstractdc.description.abstractSpace agencies, educational institutions, and private companies have adopted CubeSat nanosatellites to do scientific research, training, technology demonstration, and space-based industries in the New Space era. The next step in this changing space sector corresponds to the assembly and operation of large satellite constellations consisting of hundreds or thousands of small- or nanosatellites. This context adds new requirements and challenges to the production and operation lines of these space projects. This work focuses on the agile operation of a large nanosatellite constellation with inter-satellite communications. This work proposes utilizing the constellation contact topology to design contact plans using evolutionary algorithms and contact plan information to control the constellation operations. The contact plan is then used to create a Global Flight Plan table that summarizes all the operations required to execute a proposed task. Thus, satellites and ground station nodes only need flight software capable of queuing, executing, and transferring Flight Plan commands. This work presents the design and implementation of the complete system and case studies to validate framework functioning with constellations up to 100 nodes. The evolutionary contact plan design approach shows promising scalability results opening the possibility of controlling satellite mega constellation of hundreds or thousands of nanosatellites.es_ES
Patrocinadordc.description.sponsorshipCONICYT-PCHA/Doctorado Nacional/2016-21161016 Powered@NLHPC: Esta investigación/tesis fue parcialmente apoyada por la infraestructura de supercómputo del NLHPC (ECM-02)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Keywordsdc.subjectSatélites artificiales
Keywordsdc.subjectAlgoritmos genéticos
Keywordsdc.subjectNanosatelites
Keywordsdc.subjectMega constelaciones
Keywordsdc.subjectConstelaciones satelitales
Keywordsdc.subjectCube Sat
Títulodc.titleNanosatellite constellations control framework using evolutionary contact plan design and command architecture flight softwarees_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.carrerauchile.carreraIngeniería Civil Eléctricaes_ES
uchile.gradoacademicouchile.gradoacademicoDoctoradoes_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Doctor en Ingeniería Eléctricaes_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States