Nanosatellite constellations control framework using evolutionary contact plan design and command architecture flight software
Professor Advisor
dc.contributor.advisor
Díaz Quezada, Marcos
Professor Advisor
dc.contributor.advisor
Bergel, Alexandre
Author
dc.contributor.author
González Cortés, Carlos Eduardo
Associate professor
dc.contributor.other
Céspedes Umaña, Sandra Lorena
Associate professor
dc.contributor.other
Fraire, Juan Andrés
Associate professor
dc.contributor.other
Nakasuka, Shinichi
Admission date
dc.date.accessioned
2022-03-29T22:21:35Z
Available date
dc.date.available
2022-03-29T22:21:35Z
Publication date
dc.date.issued
2022
Identifier
dc.identifier.other
10.58011/72bt-q098
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/184600
Abstract
dc.description.abstract
Space agencies, educational institutions, and private companies have adopted CubeSat nanosatellites to do scientific research, training, technology demonstration, and space-based industries in the New Space era. The next step in this changing space sector corresponds to the assembly and operation of large satellite constellations consisting of hundreds or thousands of small- or nanosatellites. This context adds new requirements and challenges to the production and operation lines of these space projects. This work focuses on the agile operation of a large nanosatellite constellation with inter-satellite communications. This work proposes utilizing the constellation contact topology to design contact plans using evolutionary algorithms and contact plan information to control the constellation operations. The contact plan is then used to create a Global Flight Plan table that summarizes all the operations required to execute a proposed task. Thus, satellites and ground station nodes only need flight software capable of queuing, executing, and transferring Flight Plan commands. This work presents the design and implementation of the complete system and case studies to validate framework functioning with constellations up to 100 nodes. The evolutionary contact plan design approach shows promising scalability results opening the possibility of controlling satellite mega constellation of hundreds or thousands of nanosatellites.
es_ES
Patrocinador
dc.description.sponsorship
CONICYT-PCHA/Doctorado Nacional/2016-21161016
Powered@NLHPC: Esta investigación/tesis fue parcialmente apoyada por la infraestructura de supercómputo del NLHPC (ECM-02)
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Universidad de Chile
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States