Show simple item record

Authordc.contributor.authorPrieto, Joaquín
Authordc.contributor.authorEscala Astorquiza, Andrés Felipe
Authordc.contributor.authorPrivon, George C.
Authordc.contributor.authorD'Etigny, Juan
Admission datedc.date.accessioned2022-04-20T15:48:02Z
Available datedc.date.available2022-04-20T15:48:02Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationMonthly Notices of The Royal Astronomical Society Volume 508 Issue 3 Page 3672-3683 Dec 2021es_ES
Identifierdc.identifier.other10.1093/mnras/stab2740
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/185009
Abstractdc.description.abstractUsing parsec scale resolution hydrodynamical adaptive mesh refinement simulations, we have studied the mass transport process throughout a Galactic merger. The aim of such study is to connect both the peaks of mass accretion rate on to the BHs and star formation bursts with both gravitational and hydrodynamic torques acting on the galactic gaseous component. Our merger initial conditions were chosen to mimic a realistic system. The simulations include gas cooling, star formation, supernovae feedback, and AGN feedback. Gravitational and hydrodynamic torques near pericentre passes trigger gas funneling to the nuclei that is associated with bursts of star formation and black hole growth. Such episodes are intimately related with both kinds of torques acting on the galactic gas. Pericentres trigger both star formation and mass accretion rates of similar to few (1-10) M-circle dot yr(-1). Such episodes last similar to (50-75) Myr. Close passes also can produce black hole accretion that approaches and reaches the Eddington rate, lasting similar to few Myrs. Our simulation shows that both gravitational and hydrodynamic torques are enhanced at pericentre passes with gravitational torques tending to have higher values than the hydrodynamic torques throughout the merger. We also find that in the closest encounters, hydrodynamic and gravitational torques can be comparable in their effect on the gas, the two helping in the redistribution of both angular momentum and mass in the galactic disc. Such phenomena allow inward mass transport on to the BH influence radius, fuelling the compact object and lighting up the galactic nuclei.es_ES
Patrocinadordc.description.sponsorshipsupercomputing infrastructure of the NLHPC ECM-02 ESO-Chile Comite Mixto grant ORP 79/16 Centre for Astrophysics and Associated Technologies CATA FB210003 Millenium Nucleus NCN19 058 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1181663 University of Floridaes_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherOxfordes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceMonthly Notices of The Royal Astronomical Societyes_ES
Keywordsdc.subjectGalaxies: formationes_ES
Keywordsdc.subjectLarge-scale structure of the universees_ES
Keywordsdc.subjectStars: formationes_ES
Keywordsdc.subjectTurbulencees_ES
Títulodc.titleBlack hole fuelling in galaxy mergers: a high-resolution analysises_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión sometida a revisión - Preprintes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States