Show simple item record

Authordc.contributor.authorBarraza Sandoval, María Belén
Authordc.contributor.authorOlate Moya, Felipe
Authordc.contributor.authorMontecinos, Gino
Authordc.contributor.authorOrtega Palma, Jaime
Authordc.contributor.authorRosenkranz, Andreas
Authordc.contributor.authorTamburrino Tavantzis, Aldo
Authordc.contributor.authorPalza Cordero, Humberto
Admission datedc.date.accessioned2022-06-07T17:30:34Z
Available datedc.date.available2022-06-07T17:30:34Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationSci. Technol. Adv. Mater. 23 (2022) 301es_ES
Identifierdc.identifier.other10.1080/14686996.2022.2063035
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/185887
Abstractdc.description.abstractThe rice leaf, combining the surface properties of lotus leaves and shark skin, presents outstanding superhydrophobic properties motivating its biomimesis. We created a novel biomimetic rice-leaf superhydrophobic surface by a three-level hierarchical structure, using for a first time stereolithographic (SLA) 3D printed channels (100 mu m width) with an intrinsic roughness from the printing filaments (10 mu m), and coated with TiO2 nanoparticles (22 and 100nm). This structure presents a maximum advancing contact angle of 165 degrees characterized by lower both anisotropy and hysteresis contact angles than other 3D printed surfaces, due to the presence of air pockets at the surface/water interface (Cassie-Baxter state). Dynamic water-drop tests show that the biomimetic surface presents self-cleaning, which is reduced under UV-A irradiation. The biomimetic surface further renders an increased floatability to 3D printed objects meaning a drag-reduction due to reduced water/solid contact area. Numerical simulations of a channel with a biomimetic wall confirm that the presence of air is essential to understand our results since it increases the average velocity and decreases the friction factor due to the presence of a wall-slip velocity. Our findings show that SLA 3D printing is an appropriate approach to develop biomimetic superhydrophobic surfaces for future applications in anti-fouling and drag-reduction devices.es_ES
Patrocinadordc.description.sponsorshipNID -Millennium Science Initiative Program NCN17_092 ANID 21171013 AFB180004 FONDEQUIP EQM150101 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11180121 1191179 1201125 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL PIA AFB-17000 Center of Mathematical Modeling Universidad de Chile PIA AFB-17000es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherTaylor & Francises_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceScience and Technology of Advanced Materialses_ES
Keywordsdc.subject3D printinges_ES
Keywordsdc.subjectBiomimetices_ES
Keywordsdc.subjectHierarchical structurees_ES
Keywordsdc.subjectRice leafes_ES
Keywordsdc.subjectSuperhydrophobices_ES
Títulodc.titleSuperhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leafes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States