Show simple item record

Authordc.contributor.authorMatetski, Konstantin
Authordc.contributor.authorRemenik Zisis, Daniel Ilan
Admission datedc.date.accessioned2022-06-17T17:20:31Z
Available datedc.date.available2022-06-17T17:20:31Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationProbability Theory and Related Fields Early Access Apr 2022 Indexed 2022-05-09es_ES
Identifierdc.identifier.other10.1007/s00440-022-01129-w
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/186134
Abstractdc.description.abstractThe explicit biorthogonalization method, developed in [24] for continuous time TASEP, is generalized to a broad class of determinantal measures which describe the evolution of several interacting particle systems in the KPZ universality class. The method is applied to sequential and parallel update versions of each of the four variants of discrete time TASEP (with Bernoulli and geometric jumps, and with block and push dynamics) which have determinantal transition probabilities; to continuous time PushASEP; and to a version of TASEP with generalized update. In all cases, multipoint distribution functions are expressed in terms of a Fredholm determinant with an explicit kernel involving hitting times of certain random walks to a curve defined by the initial data of the system. The method is further applied to systems of interacting caterpillars, an extension of the discrete time TASEP models which generalizes sequential and parallel updates.es_ES
Patrocinadordc.description.sponsorshipNational Science Foundation (NSF) DMS-1953859 Centro de Modelamiento Matematico (CMM) Basal Funds from ANID-Chile FB210005 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1201914 Programa Iniciativa Cientifica Milenio through Nucleus Millennium Stochastic Models of Complex and Disordered Systems NC120062es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceProbability Theory and Related Fieldses_ES
Keywordsdc.subjectLarge time asymptoticses_ES
Keywordsdc.subjectPolynuclear growthes_ES
Keywordsdc.subjectFluctuationses_ES
Keywordsdc.subjectEnsembleses_ES
Keywordsdc.subjectDynamicses_ES
Keywordsdc.subjectEquationes_ES
Keywordsdc.subjectTilingses_ES
Keywordsdc.subjectModelses_ES
Títulodc.titleTASEP and generalizations: method for exact solutiones_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión sometida a revisión - Preprintes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States