Show simple item record

Authordc.contributor.authorBaddoo, Peter J.
Authordc.contributor.authorHerrmann Priesnitz, Benjamín
Authordc.contributor.authorMcKeon, Beverley J.
Authordc.contributor.authorBrunton, Steven L.
Admission datedc.date.accessioned2022-06-23T16:31:04Z
Available datedc.date.available2022-06-23T16:31:04Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationProc. R. Soc. A 478: 20210830 Apr 2022es_ES
Identifierdc.identifier.other10.1098/rspa.2021.0830
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/186216
Abstractdc.description.abstractResearch in modern data-driven dynamical systems is typically focused on the three key challenges of high dimensionality, unknown dynamics and nonlinearity. The dynamic mode decomposition (DMD) has emerged as a cornerstone for modelling high-dimensional systems from data. However, the quality of the linear DMD model is known to be fragile with respect to strong nonlinearity, which contaminates the model estimate. By contrast, sparse identification of nonlinear dynamics learns fully nonlinear models, disambiguating the linear and nonlinear effects, but is restricted to low-dimensional systems. In this work, we present a kernel method that learns interpretable data-driven models for high-dimensional, nonlinear systems. Our method performs kernel regression on a sparse dictionary of samples that appreciably contribute to the dynamics. We show that this kernel method efficiently handles high-dimensional data and is flexible enough to incorporate partial knowledge of system physics. It is possible to recover the linear model contribution with this approach, thus separating the effects of the implicitly defined nonlinear terms. We demonstrate our approach on data from a range of nonlinear ordinary and partial differential equations. This framework can be used for many practical engineering tasks such as model order reduction, diagnostics, prediction, control and discovery of governing laws.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherRoyal Soc Chemistryes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceProceedings of The Royal Society A-Mathematical Physical and Engineering Scienceses_ES
Keywordsdc.subjectMachine learninges_ES
Keywordsdc.subjectKernel methodses_ES
Keywordsdc.subjectSystem identificationes_ES
Keywordsdc.subjectModal decompositiones_ES
Títulodc.titleKernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimizationes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States