Show simple item record

Authordc.contributor.authorCaro Tagle, Víctor
Authordc.contributor.authorHo Ku, Jou-Hui
Authordc.contributor.authorWitting Enríquez, Scarlet
Authordc.contributor.authorTobar Henríquez, Felipe
Admission datedc.date.accessioned2022-07-11T15:49:22Z
Available datedc.date.available2022-07-11T15:49:22Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationIEEE Access (2022) 18: 32912-32927es_ES
Identifierdc.identifier.other10.1109/ACCESS.2022.3159653
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/186592
Abstractdc.description.abstractNeonatal seizures are sudden events in brain activity with detrimental effects in neurological functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalography (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time consuming and prone to errors due the data's nonstationarity and low signal-to-noise ratio. Towards the greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters and their validation for seizure detection (classification) in a patient specific approach.es_ES
Patrocinadordc.description.sponsorshipGoogle Incorporated Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Fondecyt 1210606 Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Center for Mathematical Modeling FB210005 Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Advanced Center for Electrical and Electronic Engineering FB0008es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEEes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Accesses_ES
Keywordsdc.subjectElectroencephalographyes_ES
Keywordsdc.subjectPediatricses_ES
Keywordsdc.subjectBrain modelinges_ES
Keywordsdc.subjectKerneles_ES
Keywordsdc.subjectGaussian processeses_ES
Keywordsdc.subjectData modelses_ES
Keywordsdc.subjectArtificial neural networkses_ES
Keywordsdc.subjectGaussian processeses_ES
Keywordsdc.subjectMulti-outputes_ES
Keywordsdc.subjectData imputationes_ES
Keywordsdc.subjectSeizure detectiones_ES
Keywordsdc.subjectSpectral mixture kernelses_ES
Títulodc.titleModeling neonatal EEG using multi-output Gaussian processeses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States