Modeling neonatal EEG using multi-output Gaussian processes
Author
dc.contributor.author
Caro Tagle, Víctor
Author
dc.contributor.author
Ho Ku, Jou-Hui
Author
dc.contributor.author
Witting Enríquez, Scarlet
Author
dc.contributor.author
Tobar Henríquez, Felipe
Admission date
dc.date.accessioned
2022-07-11T15:49:22Z
Available date
dc.date.available
2022-07-11T15:49:22Z
Publication date
dc.date.issued
2022
Cita de ítem
dc.identifier.citation
IEEE Access (2022) 18: 32912-32927
es_ES
Identifier
dc.identifier.other
10.1109/ACCESS.2022.3159653
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/186592
Abstract
dc.description.abstract
Neonatal seizures are sudden events in brain activity with detrimental effects in neurological functions usually related to epileptic fits. Though neonatal seizures can be identified from electroencephalography (EEG), this is a challenging endeavour since expert visual inspection of EEG recordings is time consuming and prone to errors due the data's nonstationarity and low signal-to-noise ratio. Towards the greater aim of automatic clinical decision making and monitoring, we propose a multi-output Gaussian process (MOGP) framework for neonatal EEG modelling. In particular, our work builds on the multi-output spectral mixture (MOSM) covariance kernel and shows that MOSM outperforms other commonly-used covariance functions in the literature when it comes to data imputation and hyperparameter-based seizure detection. To the best of our knowledge, our work is the first attempt at modelling and classifying neonatal EEG using MOGPs. Our main contributions are: i) the development of an MOGP-based framework for neonatal EEG analysis; ii) the experimental validation of the MOSM covariance kernel on real-world neonatal EEG for data imputation; and iii) the design of features for EEG based on MOSM hyperparameters and their validation for seizure detection (classification) in a patient specific approach.
es_ES
Patrocinador
dc.description.sponsorship
Google Incorporated
Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Fondecyt 1210606
Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Center for Mathematical Modeling FB210005
Agencia Nacional de Investigacion y Desarrollo de Chile (ANID) under the Advanced Center for Electrical and Electronic Engineering FB0008
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
IEEE
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States