Show simple item record

Authordc.contributor.authorMarian, Max
Authordc.contributor.authorMursak, Jonas
Authordc.contributor.authorBartz, Marcel
Authordc.contributor.authorProfito, Francisco J.
Authordc.contributor.authorRosenkranz, Andreas
Authordc.contributor.authorWartzack, Sandro
Admission datedc.date.accessioned2022-07-29T14:21:23Z
Available datedc.date.available2022-07-29T14:21:23Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationFriction (2022) Junes_ES
Identifierdc.identifier.other10.1007/s40544-022-0641-6
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/187046
Abstractdc.description.abstractNon-dimensional similarity groups and analytically solvable proximity equations can be used to estimate integral fluid film parameters of elastohydrodynamically lubricated (EHL) contacts. In this contribution, we demonstrate that machine learning (ML) and artificial intelligence (AI) approaches (support vector machines, Gaussian process regressions, and artificial neural networks) can predict relevant film parameters more efficiently and with higher accuracy and flexibility compared to sophisticated EHL simulations and analytically solvable proximity equations, respectively. For this purpose, we use data from EHL simulations based upon the full-system finite element (FE) solution and a Latin hypercube sampling. We verify that the original input data are required to train ML approaches to achieve coefficients of determination above 0.99. It is revealed that the architecture of artificial neural networks (neurons per layer and number of hidden layers) and activation functions influence the prediction accuracy. The impact of the number of training data is exemplified, and recommendations for a minimum database size are given. We ultimately demonstrate that artificial neural networks can predict the locally-resolved film thickness values over the contact domain 25-times faster than FE-based EHL simulations (R-2 values above 0.999). We assume that this will boost the use of ML approaches to predict EHL parameters and traction losses in multibody system dynamics simulations.es_ES
Patrocinadordc.description.sponsorshipPontificia Universidad Catolica de Chile ANID (Chile) in the framework of the Fondecyt 11180121 EQM190057 VID of the University of Chile within the project U-Moderniza UM-04/19es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceFrictiones_ES
Keywordsdc.subjectMachine learninges_ES
Keywordsdc.subjectElastohydrodynamic lubricationes_ES
Keywordsdc.subjectFilm thicknesses_ES
Keywordsdc.subjectSupport vector machinees_ES
Keywordsdc.subjectGaussian process regressiones_ES
Keywordsdc.subjectArtificial neural networkes_ES
Títulodc.titlePredicting EHL film thickness parameters by machine learning approacheses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States