Show simple item record

Authordc.contributor.authorCarrera, Diego Fernando
Authordc.contributor.authorVagas Rosales, César
Authordc.contributor.authorZabala Blanco, David
Authordc.contributor.authorYungaicela Naula, Noe M
Authordc.contributor.authorAzurdia Meza, César Augusto
Authordc.contributor.authorMohamed, Marey
Authordc.contributor.authorAli Dehghan, Firoozabadi
Admission datedc.date.accessioned2022-08-08T19:48:04Z
Available datedc.date.available2022-08-08T19:48:04Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationIEEE Access (2022) 10: 58965-58981es_ES
Identifierdc.identifier.other10.1109/ACCESS.2022.3178709
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/187215
Abstractdc.description.abstractWireless communication systems working in millimeter-wave (mmWave) frequency bands offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems. However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations assumed the use of hybrid beamforming structures that reduce power consumption and signal processing tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM) neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed method to maximize the system performance and decrease the complexity of the receiver. We compare the results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer perceptron (MLP) neural network trained offline. The numerical results show that with a good balance between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO receiver outperforms the other evaluated schemes.es_ES
Patrocinadordc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologia (CONACyT) 255387 School of Engineering and Sciences Telecommunications Research Focus Group Proyect Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) 1211132 Proyect Agencia Nacional de Investigacion y Desarrollo (ANID) FONDECYT 1200810 Laboratory of Technological Research in Pattern Recognition (LITRP) Tecnologico de Monterrey UCM-IN-21200es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEEes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Accesses_ES
Keywordsdc.subjectReceiverses_ES
Keywordsdc.subjectChannel estimationes_ES
Keywordsdc.subjectMillimeter wave communicationes_ES
Keywordsdc.subjectSignal processing algorithmses_ES
Keywordsdc.subjectOFDMes_ES
Keywordsdc.subjectNonhomogeneous mediaes_ES
Keywordsdc.subjectMassive MIMOes_ES
Keywordsdc.subject5G NRes_ES
Keywordsdc.subjectBeamforminges_ES
Keywordsdc.subjectMachine learninges_ES
Keywordsdc.subjectMassive MIMOes_ES
Keywordsdc.subjectMillimeter wavees_ES
Keywordsdc.subjectMultilayer ELMes_ES
Títulodc.titleNovel multilayer extreme learning machine as a massive MIMO receiver for millimeter wave communicationses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States