Show simple item record

Professor Advisordc.contributor.advisorVan Den Bosch, Hanne
Authordc.contributor.authorMoreno Bustamante, Matías Ignacio
Associate professordc.contributor.otherMuñoz Cerón, Claudio
Associate professordc.contributor.otherRioseco Yáñez, Paola
Associate professordc.contributor.otherSarbach, Olivier
Admission datedc.date.accessioned2022-10-06T20:29:18Z
Available datedc.date.available2022-10-06T20:29:18Z
Publication datedc.date.issued2022
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/188462
Abstractdc.description.abstractWe study a Newtonian model, that allows us to describe some phenomena in stellar dynamics. This model is described by a partial differential equation known as the Vlasov equation or the Liouville equation, whose solutions describe the temporal evolution of a collisionless particle system in the phase space, subject to a self-interacting gravitational potential. This work is divided in two parts. In the first part, we treat the Flat Vlasov-Poisson system with an external gravitational potential induced by a fixed mass density. This model describes some extremely flat objects in galactic dynamics. The aim of this part is the study of the existence and stability of steady states solutions of the Flat Vlasov-Poisson system in this case. We solve a variational problem to find minimizers for the Casimir-Energy functional in a suitable set of functions. The minimization problem is solved through a reduction of the original optimization problem (see [22]), but instead of a concentration-compactness argument, we use a symmetrization argument, taking the rearrangement of a minimizing sequence and we prove that it converges weakly to a minimizer in a suitable Lp space with p > 1. We prove that this minimizer induces a solution for the original minimization problem. The minimization problem give us a non-linear stability result for the steady state solution in the Lpspace. In the second part, we show the results published in [13]. We prove phase-space mixing for solutions of the Vlasov equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate t^(−1). In one dimension, we also study the case where this condition fails at a certain energy, showing that mixing still holds but with a slower rate. When the condition holds and functions have higher regularity, the rate can be faster.es_ES
Patrocinadordc.description.sponsorshipCMM ANID PIA AFB170001, CMM ANID BASAL ACE210010, CMM ANID BASAL FB210005 y FONDECYT 11220194es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Keywordsdc.subjectDinámica estelar
Keywordsdc.subjectEcuación Vlasov
Keywordsdc.subjectProblemas variacionales
Keywordsdc.subjectSistema Vlasov-Poisson plano
Keywordsdc.subjectCasimir-Energy functional
Keywordsdc.subjectPhase-space mixing
Títulodc.titleExistence and stability of steady states solutions of flat Vlasov-Poisson system with a central mass densityes_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Matemáticaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.titulacionuchile.titulacionDoble Titulaciónes_ES
uchile.carrerauchile.carreraIngeniería Civil Matemáticaes_ES
uchile.gradoacademicouchile.gradoacademicoMagisteres_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadases_ES
uchile.notadetesisuchile.notadetesisMemoria para optar al título de Ingeniero Civil Matemático


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States