Show simple item record

Authordc.contributor.authorMontecino, Daniel A.
Authordc.contributor.authorPérez, Claudio A.
Authordc.contributor.authorBowyer, Kevin W.
Admission datedc.date.accessioned2022-10-20T17:25:44Z
Available datedc.date.available2022-10-20T17:25:44Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationIEEE Access (2021) Vol. 9 págs. 126856-126872es_ES
Identifierdc.identifier.other10.1109/ACCESS.2021.3111175
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/188726
Abstractdc.description.abstractThe aim of Neuroevolution is to nd neural networks and convolutional neural network (CNN) architectures automatically through evolutionary algorithms. A crucial problem in neuroevolution is search time, since multiple CNNs must be trained during evolution. This problem has led to tness acceleration approaches, generating a trade-off between time and tness delity. Also, since search spaces for this problem usually include only a few parameters, this increases the human bias in the search. In this work, we propose a novel two-level genetic algorithm (GA) for addressing the delity-time trade-off problem for the tness computation in CNNs. The rst level evaluates many individuals quickly, and the second evaluates only those with the best results more nely. We also propose a search space with few restrictions, and an encoding with unexpressed genes to facilitate the crossover operation. This search space allows CNN architectures to have any sizes, shapes, and skip-connections among nodes. The two-level GA was applied to the pattern recognition problem on seven datasets, ve MNIST-Variants, Fashion-MNIST, and CIFAR-10, achieving signi cantly better results than all those previously published. Our results show an improvement of 39.89% (4.2% error reduction) on the most complex dataset of MNIST (MRDBI), and on average 30.52% (1.35% error reduction) on all the ve datasets. Furthermore, we show that our algorithm performed as well as precise-training GA, but took only the time of a fast-training GA. These results can be relevant and useful not only for image classi cation problems but also for GA-related problems.es_ES
Patrocinadordc.description.sponsorshipAgencia Nacional de Investigacion y Desarrollo (ANID) FONDECYT 1191610 AFB180004 Department of Electrical Engineering, Universidad de Chile Advanced Mining Technology Center, Universidad de Chilees_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE-Inst Electrical Electronics Engineerses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Accesses_ES
Keywordsdc.subjectGenetic algorithmses_ES
Keywordsdc.subjectConvolutional neural networkses_ES
Keywordsdc.subjectTraininges_ES
Keywordsdc.subjectStatisticses_ES
Keywordsdc.subjectSociologyes_ES
Keywordsdc.subjectComputer architecturees_ES
Keywordsdc.subjectTask analysises_ES
Keywordsdc.subjectConvolutional neural networkes_ES
Keywordsdc.subjectAutomatic architecture designes_ES
Keywordsdc.subjectDeep learninges_ES
Keywordsdc.subjectGenetic algorithmses_ES
Keywordsdc.subjectNeuroevolutiones_ES
Keywordsdc.subjectImage classificationes_ES
Títulodc.titleTwo-level genetic algorithm for evolving convolutional neural networks for pattern recognitiones_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States