Show simple item record

Authordc.contributor.authorSarmiento Laurel, Cristóbal Andrés
Authordc.contributor.authorCardemil, José M.
Authordc.contributor.authorCalderón Muñoz, Williams Rodrigo
Admission datedc.date.accessioned2022-12-13T20:16:44Z
Available datedc.date.available2022-12-13T20:16:44Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationEngineering Applications of Computational Fluid Mechanics (2022) 16: 804–825es_ES
Identifierdc.identifier.other10.1080/19942060.2022.2040595
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/189745
Abstractdc.description.abstractPorous media structures have been proposed as an interesting solution on the design of high-temperature volumetric heat exchangers and sensible thermal energy storage devices. The wide exchange area between the solid matrix and the fluid offers the possibility to reach higher conversion efficiencies, particularly on applications of high-temperature (similar to 1000 degrees C) gases. Nevertheless, the presence of the solid matrix increases the hydrodynamic resistance on the flow, and consequently, generates irreversibilities. The entropy generation can assess in the same figure of merit the different irreversibilities generation mechanisms. In this context, this work presents a physical and mathematical model to determine the local entropy generation (LEG) rate and recognizes its different generation mechanisms for porous media. The proposed model defines a useful expression to determine the LEG as a post-process variable from the usual CFD scalar and vectorial results (temperature, velocity, TKE, and epsilon), without the necessity of solving an additional entropy transport equation. A numerical experiment was implemented showing inflection points where the porous hydrodynamic resistance forces exceed the heat transfer in the LEG rate. The Forchheimer hydrodynamic resistance effect can domine the LEG in comparison to the volumetric heat transfer for high porous Reynolds regimes (Re-D >100) when the porosity is under 0.6.es_ES
Patrocinadordc.description.sponsorship'Solar Energy Research Center' -SERC-Chile ANID/FONDAP 15110019 project Fondecyt from Chilean ANID 11140725 PhD scholarship ANID PFCHA/Doctorado Nacional 2018/2018-21181794es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherTaylor & Francises_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceEngineering Applications of Computational Fluid Mechanicses_ES
Keywordsdc.subjectEntropy generationes_ES
Keywordsdc.subjectPorous mediaes_ES
Keywordsdc.subjectVolumetric solar receiveres_ES
Keywordsdc.subjectSensible thermal energy storagees_ES
Keywordsdc.subjectCFDes_ES
Títulodc.titleLocal entropy generation model for numerical CFD analysis of fluid flows through porous media, under laminar and turbulent regimeses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States